176 research outputs found

    Enhanced Open-Circuit Voltage of Wide-Bandgap Perovskite Photovoltaics by Using Alloyed (FA1–xCsx)Pb(I1–xBrx)3 Quantum Dots

    Get PDF
    We report a detailed study on APbX3 (A=Formamidinium (FA+), Cs+; X=I-, Br-) perovskite quantum dots (PQDs) with combined A- and X-site alloying that exhibit, both, a wide bandgap and high open circuit voltage (Voc) for the application of a potential top cell in tandem junction photovoltaic (PV) devices. The nanocrystal alloying affords control over the optical bandgap and is readily achieved by solution-phase cation and anion exchange between previously synthesized FAPbI3 and CsPbBr3 PQDs. Increasing only the Br- content of the PQDs widens the bandgap but results in shorter carrier lifetimes and associated Voc losses in devices. These deleterious effects can be mitigated by replacing Cs+ with FA+, resulting in wide bandgap PQD absorbers with improved charge-carrier mobility and PVs with higher Voc. Although further device optimization is required, these results demonstrate the potential of FA1–xCsx)Pb(I1–xBrx)3 PQDs for wide bandgap perovskite PVs with high Voc

    Importance of interfaces in hybrid perovskite solar cells

    Get PDF
    Photovoltaic devices based on hybrid organic-inorganic perovskite absorbers have reached outstanding performance over the past few years, surpassing power conversion efficiency of over 22%. In this talk we discuss the role of the interface in optimizing device performance as measured by both power conversion efficiency and stability. We present an examination of different perovskite active layers and interfacial electronic structure of these remarkable materials with functional oxide and organic contact layers. Interface formation of the active layer with different carrier transport materials has direct implications for performance of the resulting devices. We present interface studies, which permit identification of charge transfer mechanisms across the interface with chemical specificity and insight into the requirements for realizing high performance devices. Our findings from surface science approaches are combined with time resolved spectroscopy, structural studies and device level studies to validate impacts on carrier dynamics and demonstrate their technological relevance of interfacial insights

    Abusive Head Trauma and Mortality-An Analysis From an International Comparative Effectiveness Study of Children With Severe Traumatic Brain Injury

    Get PDF
    Objectives: Small series have suggested that outcomes after abusive head trauma are less favorable than after other injury mechanisms. We sought to determine the impact of abusive head trauma on mortality and identify factors that differentiate children with abusive head trauma from those with traumatic brain injury from other mechanisms. Design: First 200 subjects from the Approaches and Decisions in Acute Pediatric Traumatic Brain Injury Trial—a comparative effectiveness study using an observational, cohort study design. Setting: PICUs in tertiary children’s hospitals in United States and abroad. Patients: Consecutive children (age < 18 yr) with severe traumatic brain injury (Glasgow Coma Scale ≤ 8; intracranial pressure monitoring). Interventions: None. Measurements and Main Results: Demographics, injury-related scores, prehospital, and resuscitation events were analyzed. Children were dichotomized based on likelihood of abusive head trauma. A total of 190 children were included (n = 35 with abusive head trauma). Abusive head trauma subjects were younger (1.87 ± 0.32 vs 9.23 ± 0.39 yr; p < 0.001) and a greater proportion were female (54.3% vs 34.8%; p = 0.032). Abusive head trauma were more likely to 1) be transported from home (60.0% vs 33.5%; p < 0.001), 2) have apnea (34.3% vs 12.3%; p = 0.002), and 3) have seizures (28.6% vs 7.7%; p < 0.001) during prehospital care. Abusive head trauma had a higher prevalence of seizures during resuscitation (31.4 vs 9.7%; p = 0.002). After adjusting for covariates, there was no difference in mortality (abusive head trauma, 25.7% vs nonabusive head trauma, 18.7%; hazard ratio, 1.758; p = 0.60). A similar proportion died due to refractory intracranial hypertension in each group (abusive head trauma, 66.7% vs nonabusive head trauma, 69.0%). Conclusions: In this large, multicenter series, children with abusive head trauma had differences in prehospital and in-hospital secondary injuries which could have therapeutic implications. Unlike other traumatic brain injury populations in children, female predominance was seen in abusive head trauma in our cohort. Similar mortality rates and refractory intracranial pressure deaths suggest that children with severe abusive head trauma may benefit from therapies including invasive monitoring and adherence to evidence-based guidelines

    Germinal Centers without T Cells

    Get PDF
    Germinal centers are critical for affinity maturation of antibody (Ab) responses. This process allows the production of high-efficiency neutralizing Ab that protects against virus infection and bacterial exotoxins. In germinal centers, responding B cells selectively mutate the genes that encode their receptors for antigen. This process can change Ab affinity and specificity. The mutated cells that produce high-affinity Ab are selected to become Ab-forming or memory B cells, whereas cells that have lost affinity or acquired autoreactivity are eliminated. Normally, T cells are critical for germinal center formation and subsequent B cell selection. Both processes involve engagement of CD40 on B cells by T cells. This report describes how high-affinity B cells can be induced to form large germinal centers in response to (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll in the absence of T cells or signaling through CD40 or CD28. This requires extensive cross-linking of the B cell receptors, and a frequency of antigen-specific B cells of at least 1 in 1,000. These germinal centers abort dramatically at the time when mutated high-affinity B cells are normally selected by T cells. Thus, there is a fail-safe mechanism against autoreactivity, even in the event of thymus-independent germinal center formation

    In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    Get PDF
    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    Get PDF
    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequence

    Mathematics and biology: a Kantian view on the history of pattern formation theory

    Get PDF
    Driesch’s statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910–1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922–1967) and the mechanism of the prime example for a chemical oscillator, the Belousov–Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt’s theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer–Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century
    • …
    corecore