65 research outputs found

    Role of N-glycosylation in renal betaine transport

    Get PDF
    The osmolyte and folding chaperone betaine is transported by the renal Na+-coupled GABA (γ-aminobutyric acid) symporter BGT-1 (betaine/GABA transporter 1), a member of the SLC6 (solute carrier 6) family. Under hypertonic conditions, the transcription, translation and plasma membrane (PM) insertion of BGT-1 in kidney cells are significantly increased, resulting in elevated betaine and GABA transport. Re-establishing isotonicity involves PM depletion of BGT-1. The molecular mechanism of the regulated PM insertion of BGT-1 during changes in osmotic stress is unknown. In the present study, we reveal a link between regulated PM insertion and N-glycosylation. Based on homology modelling, we identified two sites (Asn171 and Asn183) in the extracellular loop 2 (EL2) of BGT-1, which were investigated with respect to trafficking, insertion and transport by immunogold-labelling, electron microscopy (EM), mutagenesis and two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radiolabelled substrate into MDCK (Madin–Darby canine kidney) and HEK293 (human embryonic kidney) cells. Trafficking and PM insertion of BGT-1 was clearly promoted by N-glycosylation in both oocytes and MDCK cells. Moreover, association with N-glycans at Asn171 and Asn183 contributed equally to protein activity and substrate affinity. Substitution of Asn171 and Asn183 by aspartate individually caused no loss of BGT-1 activity, whereas the double mutant was inactive, suggesting that N-glycosylation of at least one of the sites is required for function. Substitution by alanine or valine at either site caused a dramatic loss in transport activity. Furthermore, in MDCK cells PM insertion of N183D was no longer regulated by osmotic stress, highlighting the impact of N-glycosylation in regulation of this SLC6 transporter

    Psychomotor impairments and therapeutic implications revealed by a mutation associated with infantile Parkinsonism-Dystonia

    Get PDF
    Parkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology. Dopamine (DA) transporter (DAT) deficiency syndrome (DTDS) is a distinct type of infantile parkinsonism-dystonia that shares key clinical features with PD, including motor deficits (progressive bradykinesia, tremor, hypomimia) and altered DA neurotransmission. Here, we define structural, functional, and behavioral consequences of a Cys substitution at R445 in human DAT (hDAT R445C), identified in a patient with DTDS. We found that this R445 substitution disrupts a phylogenetically conserved intracellular (IC) network of interactions that compromise the hDAT IC gate. This is demonstrated by both Rosetta molecular modeling and fine-grained simulations using hDAT R445C, as well as EPR analysis and X-ray crystallography of the bacterial homolog leucine transporter. Notably, the disruption of this IC network of interactions supported a channel-like intermediate of hDAT and compromised hDAT function. We demonstrate that Drosophila melanogaster expressing hDAT R445C show impaired hDAT activity, which is associated with DA dysfunction in isolated brains and with abnormal behaviors monitored at high-speed time resolution. We show that hDAT R445C Drosophila exhibit motor deficits, lack of motor coordination (i.e. flight coordination) and phenotypic heterogeneity in these behaviors that is typically associated with DTDS and PD. These behaviors are linked with altered dopaminergic signaling stemming from loss of DA neurons and decreased DA availability. We rescued flight coordination with chloroquine, a lysosomal inhibitor that enhanced DAT expression in a heterologous expression system. Together, these studies shed some light on how a DTDS-linked DAT mutation underlies DA dysfunction and, possibly, clinical phenotypes shared by DTDS and PD

    Permeation through the Cell Membrane of a Boron-Based β-Lactamase Inhibitor

    Get PDF
    Bacteria express beta-lactamases to counteract the beneficial action of antibiotics. Benzo[b]-thiophene-2-boronic acid (BZB) derivatives are β-lactamase inhibitors and, as such, promising compounds to be associated with β-lactam antibacterial therapies. The uncharged form of BZB, in particular, is suggested to diffuse through the outer membrane of Gram negative bacteria. In this study, through the combination of electrophysiological experiments across reconstituted PC/n-decane bilayers and metadynamics-based free energy calculations, we investigate the permeation mechanism of boronic compounds. Our experimental data establish that BZB passes through the membrane, while computer simulations provide hints for the existence of an aqueous, water-filled monomolecular channel. These findings provide new perspectives for the design of boronic acid derivatives with high membrane permeability

    The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism

    Get PDF
    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    HIV-1 Integrase–DNA Interactions Investigated by Molecular Modelling

    No full text
    HIV-1 integrase is the viral enzyme responsible for the insertion of the viral DNA into the host cell chromosome. This process occurs through two distinct biochemical reactions: the 3′-processing of the viral DNA and the transesterification reaction. Because experimental structural information on the reaction intermediate is not available, several molecular models have been developed. Unfortunately, none of the models of the enzyme–substrate complex is fully consistent with the available molecular biological data. We have constructed a new theoretical model based on mutagenesis experiments and cross-linking data, using a relatively accurate computational setup. The structural features of the model along with its limitations are discussed here

    Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels

    Get PDF
    The kidney and inner ear CLC-K chloride channels, which are involved in salt absorption and endolymph production, are regulated by extracellular Ca2+ in the millimolar concentration range. Recently, Gradogna et al. (2010. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201010455) identified a pair of acidic residues (E261 and D278) located in the loop between helices I and J as forming a putative intersubunit Ca2+-binding site in hClC-Ka. In this study, we sought to explore the properties of the binding site in more detail. First, we verified that the site is conserved in hClC-Kb and rClC-K1. In addition, we could confer Ca2+ sensitivity to the Torpedo marmorata ClC-0 channel by exchanging its I–J loop with that from ClC-Ka, demonstrating a direct role of the loop in Ca2+ binding. Based on a structure of a bacterial CLC and a new sequence alignment, we built homology models of ClC-Ka. The models suggested additional amino acids involved in Ca2+ binding. Testing mutants of these residues, we could restrict the range of plausible models and positively identify two more residues (E259 and E281) involved in Ca2+ coordination. To investigate cation specificity, we applied extracellular Zn2+, Mg2+, Ba2+, Sr2+, and Mn2+. Zn2+ blocks ClC-Ka as well as its Ca2+-insensitive mutant, suggesting that Zn2+ binds to a different site. Mg2+ does not activate CLC-Ks, but the channels are activated by Ba2+, Sr2+, and Mn2+ with a rank order of potency of Ca2+ > Ba2+ > Sr2+ = Mn2+ for the human CLC-Ks. Dose–response analysis indicates that the less potent Ba2+ has a lower affinity rather than a lower efficacy. Interestingly, rClC-K1 shows an altered rank order (Ca2+ > Sr2+ >> Ba2+), but homology models suggest that residues outside the I–J loop are responsible for this difference. Our detailed characterization of the regulatory Ca2+-binding site provides a solid basis for the understanding of the physiological modulation of CLC-K channel function in the kidney and inner ear

    Molecular Modeling of Henry-Michaelis and acyl-enzyme complexes between imipenem and Enterobacter cloacae P99 beta-lactamase

    No full text
    [eng] We report a molecular‐mechanics (AMBER*) study on the Henry-Michaelis complex and the corresponding acyl-enzyme adduct formed between imipenem (1), a transient inhibitor of β‐lactamases, and Enterobacter cloacae P99, a class C‐β‐lactamase. We have examined the influence of the structural configuration of the functional groups in the substrate on their three‐dimensional (3D) arrangement at the active site, which was compared with those adopted by typical penicillins and cephalosporins. Our results confirm that the carboxy group of the antibiotic plays a prominent role in the binding of the substrate to the active site, and that it activates Ser64 through interaction with the phenolic OH group of Tyr150. The binding of imipenem to E. cloacae P99 increases the distance between Tyr150 and Ser64 due to the presence of a hydrophobic Me group in the (R)‐1‐hydroxyethyl substituent at C(6). This, together with the 3D arrangement of its carboxy group, leads to an interaction with the active site in a manner that hinders H+ exchange between the nucleophile in Ser64 and its basic activator, the phenolic group of Tyr150
    corecore