78 research outputs found

    In Astrocytes the Accumulation of the Immunity-Related GTPases Irga6 and Irgb6 at the Vacuole of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular protozoan parasite responsible for a common infection of the central nervous system. Interferon (IFN)γ is the key cytokine of host defence against T. gondii. However, T. gondii strains differ in virulence and T. gondii factors determining virulence are still poorly understood. In astrocytes IFNγ primarily induces immunity-related GTPases (IRGs), providing a cell-autonomous resistance system. Here, we demonstrate that astrocytes prestimulated with IFNγ inhibit the proliferation of various avirulent, but not virulent, T. gondii strains. The two analyzed immunity-related GTPases Irga6 and Irgb6 accumulate at the PV only of avirulent T. gondii strains, whereas in virulent strains this accumulation is only detectable at very low levels. Both IRG proteins could temporarily be found at the same PV, but did only partially colocalize. Coinfection of avirulent and virulent parasites confirmed that the accumulation of the two analyzed IRGs was a characteristic of the individual PV and not determined by the presence of other strains of T. gondii in the same host cell. Thus, in astrocytes the accumulation of Irga6 and Irgb6 significantly differs between avirulent and virulent T. gondii strains correlating with the toxoplasmacidal properties suggesting a role for this process in parasite virulence

    Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation.

    Get PDF
    BACKGROUND: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. METHODS: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. RESULTS: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. CONCLUSIONS: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF

    Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation

    Get PDF
    Background: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. / Methods: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. / Results: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. / Conclusions: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF

    Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation: The AFGen Consortium

    Get PDF
    It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk

    Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval

    Get PDF
    Background: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. Methods: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. Results: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (P<1.2×10−6), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 (P=5.9×10−11) and SCN5A (P=1.1×10−7) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. Conclusions: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health

    Resting heart rate and incident atrial fibrillation: A stratified Mendelian randomization in the AFGen consortium

    Get PDF
    Background: Both elevated and low resting heart rates are associated with atrial fibrillation (AF), suggesting a U-shaped relationship. However, evidence for a U-shaped causal association between genetically-determined resting heart rate and incident AF is limited. We investigated potential directional changes of the causal association between genetically-determined resting heart rate and incident AF. Method and results: Seven cohorts of the AFGen consortium contributed data to this meta-analysis. All participants were of European ancestry with known AF status, genotype information, and a heart rate measurement from a baseline electrocardiogram (ECG). Three strata of instrumental variable-free resting heart rate were used to assess possible non-linear associations between genetically-determined resting heart rate and the logarithm of the incident AF hazard rate: &lt;65; 65–75; and &gt;75 beats per minute (bpm). Mendelian randomization analyses using a weighted resting heart rate polygenic risk score were performed for each stratum. We studied 38,981 individuals (mean age 59±10 years, 54% women) with a mean resting heart rate of 67±11 bpm. During a mean follow-up of 13±5 years, 4,779 (12%) individuals developed AF. A U-shaped association between the resting heart rate and the incident AF-hazard ratio was observed. Genetically-determined resting heart rate was inversely associated with incident AF for instrumental variable-free resting heart rates below 65 bpm (hazard ratio for genetically-determined resting heart rate, 0.96; 95% confidence interval, 0.94–0.99; p = 0.01). Genetically-determined resting heart rate was not associated with incident AF in the other two strata. Conclusions: For resting heart rates below 65 bpm, our results support an inverse causal association between genetically-determined resting heart rate and incident AF

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01–0.05) at P < 5 × 10^{-8} under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Genetic analyses of the QT interval and its components in over 250K individuals identifies new loci and pathways affecting ventricular depolarization and repolarization

    Get PDF
    corecore