54 research outputs found

    Inflammation and oxidative stress caused by nitric oxide synthase uncoupling might lead to left ventricular diastolic and systolic dysfunction in patients with hypertension

    Get PDF
    Objective: To investigate the role of oxidative stress, inflammation, hypercoagulability and neuroendocrine activation in the transition of hypertensive heart disease to heart failure with preserved ejection fraction (HFPEF). Methods: We performed echocardiography for 112 patients (≥ 60 years old) with normal EF (18 controls and 94 with hypertension), and determined protein carbonylation (PC), and tetrahydrobiopterin (BH4), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), fibrinogen, plasminogen activator inhibitor type-I (PAI-I), von Willebrand factor, chromogranin A (cGA) and B-type natriuretic peptide (BNP) levels from their blood samples. Results: We found that 40% (38/94) of the patients with hypertension (HT) had no diastolic dysfunction (HTDD-), and 60% (56/94) had diastolic dysfunction (HTDD+). Compared to the controls, both patient groups had increased PC and BH4, TNF-α, PAI-I and BNP levels, while the HTDD+ group had elevated cGA and CRP levels. Decreased atrial and longitudinal left ventricular (LV) systolic and diastolic myocardial deformation (strain and strain rate) was demonstrated in both patient groups versus the control. Patients whose LV diastolic function deteriorated during the follow-up had elevated PC and IL-6 level compared to their own baseline values, and to the respective values of patients whose LV diastolic function remained unchanged. Oxidative stress, inflammation, BNP and PAI-I levels inversely correlated with LV systolic, diastolic and atrial function. Conclusions: In patients with HT and normal EF, the most common HFPEF precursor condition, oxidative stress and inflammation may be responsible for LV systolic, diastolic and atrial dysfunction, which are important determinants of the transition of HT to HFPEF

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
    corecore