246 research outputs found
Biospheric traumas caused by large impacts and predicted relics in the sedimentary record
When a large asteroid or comet impacts the Earth the supersonic plume ejected on impact causes severe shock heating and chemical reprocessing of the proximal atmosphere. The resultant NO is converted rapidly to NO2, foliage damage due to exposure to NO2 and HNO3, toxicosis resulting from massive mobilization of soil trace metals, and faunal asphyxiation due to exposure to NO2. One class of relic evidence for the above effects arises because extinction of species caused by these chemically induced traumas would be selective. A second class of relic evidence arises because the acid rain will cause massive weathering of continental rocks and soils characterized by large ratios of the relatively insoluble metals, to the more soluble metals. This weathering would be best recorded in fossils in unperturbed deltaic, neritic, or limnetic sediments and for metals with very long oceanic residence times in deep ocean sediments as well. This evidence is discussed
Venus volcanism: Rate estimates from laboratory studies of sulfur gas-solid reactions
Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are an integral part of a hypothesized cycle of thermochemical and photochemical reactions responsible for the maintenance of the global sulfuric acid cloud cover on Venus. SO2 is continually removed from the Venus atmosphere by reaction with calcium bearing minerals on the planet's surface. The rate of volcanism required to balance SO2 depletion by reactions with calcium bearing minerals on the Venus surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates combined with reasonable assumptions about the sulfur content of the erupted material (gas + magma). A laboratory program was carried out to measure the rates of reaction between SO2 and possible crustal minerals on Venus. The reaction of CaCO3(calcite) + SO2 yields CaSO4 (anhydrite) + CO was studied. Brief results are given
Predicted Abundances of Carbon Compounds in Volcanic Gases on Io
We use chemical equilibrium calculations to model the speciation of carbon in
volcanic gases on Io. The calculations cover wide temperature (500-2000 K),
pressure (10^-8 to 10^+2 bars), and composition ranges (bulk O/S atomic ratios
\~0 to 3), which overlap the nominal conditions at Pele (1760 K, 0.01 bar, O/S
~ 1.5). Bulk C/S atomic ratios ranging from 10^-6 to 10^-1 in volcanic gases
are used with a nominal value of 10^-3 based upon upper limits from Voyager for
carbon in the Loki plume on Io. Carbon monoxide and CO2 are the two major
carbon gases under all conditions studied. Carbonyl sulfide and CS2 are orders
of magnitude less abundant. Consideration of different loss processes
(photolysis, condensation, kinetic reactions in the plume) indicates that
photolysis is probably the major loss process for all gases. Both CO and CO2
should be observable in volcanic plumes and in Io's atmosphere at abundances of
several hundred parts per million by volume for a bulk C/S ratio of 10^-3.Comment: 21 pages, 4 figures, 4 tables; accepted by Astrophysical Journa
Application of an Equilibrium Vaporization Model to the Ablation of Chondritic and Achondritic Meteoroids
We modeled equilibrium vaporization of chondritic and achondritic materials
using the MAGMA code. We calculated both instantaneous and integrated element
abundances of Na, Mg, Ca, Al, Fe, Si, Ti, and K in chondritic and achondritic
meteors. Our results are qualitatively consistent with observations of meteor
spectra.Comment: 8 pages, 4 figures; in press, Earth, Moon, and Planets, Meteoroids
2004 conference proceeding
Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres
We present a comprehensive description of the theory and practice of opacity
calculations from the infrared to the ultraviolet needed to generate models of
the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using
existing line lists and spectroscopic databases in disparate formats are
presented and plots of the resulting absorptive opacities versus wavelength for
the most important molecules and atoms at representative temperature/pressure
points are provided. Electronic, ro-vibrational, bound-free, bound-bound,
free-free, and collision-induced transitions and monochromatic opacities are
derived, discussed, and analyzed. The species addressed include the alkali
metals, iron, heavy metal oxides, metal hydrides, , , , ,
, , , and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical
Journal Supplement Series, replaced with more compact emulateapj versio
Injection of meteoric phosphorus into planetary atmospheres
This study explores the delivery of phosphorus to the upper atmospheres of Earth, Mars, and Venus via the ablation of cosmic dust particles. Micron-size meteoritic particles were flash heated to temperatures as high as 2900 âK in a Meteor Ablation Simulator (MASI), and the ablation of PO and Ca recorded simultaneously by laser induced fluorescence. Apatite grains were also ablated as a reference. The speciation of P in anhydrous chondritic porous Interplanetary Dust Particles was made by K-edge X-ray absorption near edge structure (XANES) spectroscopy, demonstrating that P mainly occurs in phosphate-like domains. A thermodynamic model of P in a silicate melt was then developed for inclusion in the Leeds Chemical Ablation Model (CABMOD). A Regular Solution model used to describe the distribution of P between molten stainless steel and a multicomponent slag is shown to provide the most accurate solution for a chondritic-composition, and reproduces satisfactorily the PO ablation profiles observed in the MASI. Meteoritic P is moderately volatile and ablates before refractory metals such as Ca; its ablation efficiency in the upper atmosphere is similar to Ni and Fe. The speciation of evaporated P depends significantly on the oxygen fugacity, and P should mainly be injected into planetary upper atmospheres as PO2, which will then likely undergo dissociation to PO (and possibly P) through hyperthermal collisions with air molecules. The global P ablation rates are estimated to be 0.017 ât âdâ1 (tonnes per Earth day), 1.15 âĂ â10â3 ât âdâ1 and 0.024 ât âdâ1 for Earth, Mars and Venus, respectively
A Time-Dependent Radiative Model of HD209458b
We present a time-dependent radiative model of the atmosphere of HD209458b
and investigate its thermal structure and chemical composition. In a first
step, the stellar heating profile and radiative timescales were calculated
under planet-averaged insolation conditions. We find that 99.99% of the
incoming stellar flux has been absorbed before reaching the 7 bar level.
Stellar photons cannot therefore penetrate deeply enough to explain the large
radius of the planet. We derive a radiative time constant which increases with
depth and reaches about 8 hr at 0.1 bar and 2.3 days at 1 bar. Time-dependent
temperature profiles were also calculated, in the limit of a zonal wind that is
independent on height (i.e. solid-body rotation) and constant absorption
coefficients. We predict day-night variations of the effective temperature of
\~600 K, for an equatorial rotation rate of 1 km/s, in good agreement with the
predictions by Showman &Guillot (2002). This rotation rate yields day-to-night
temperature variations in excess of 600 K above the 0.1-bar level. These
variations rapidly decrease with depth below the 1-bar level and become
negligible below the ~5--bar level for rotation rates of at least 0.5 km/s. At
high altitudes (mbar pressures or less), the night temperatures are low enough
to allow sodium to condense into Na2S. Synthetic transit spectra of the visible
Na doublet show a much weaker sodium absorption on the morning limb than on the
evening limb. The calculated dimming of the sodium feature during planetary
transites agrees with the value reported by Charbonneau et al. (2002).Comment: 9 pages, 8 figures, replaced with the revised versio
Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus
Thermochemical equilibrium and kinetic calculations are used to model sulfur
and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant
planets (EGPs). The chemical behavior of individual S- and P-bearing gases and
condensates is determined as a function of pressure, temperature, and
metallicity. The results are independent of particular model atmospheres and,
in principle, the equilibrium composition along the pressure-temperature
profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant
S-bearing gas throughout substellar atmospheres and approximately represents
the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer
of weather in substellar atmospheres. Disequilibrium abundances of phosphine
(PH3) approximately representative of the total atmospheric phosphorus
inventory are expected to be mixed upward into the observable atmospheres of
giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g.,
P2, PH3, PH2, PH, HCP) become increasingly important at high temperatures.Comment: 38 pages, 8 figures, accepted for Astrophysical Journa
Scientific Preparations for Lunar Exploration with the European Lunar Lander
This paper discusses the scientific objectives for the ESA Lunar Lander
Mission, which emphasise human exploration preparatory science and introduces
the model scientific payload considered as part of the on-going mission
studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8
figures, 1 tabl
Origin of volatiles in the Main Belt
We propose a scenario for the formation of the Main Belt in which asteroids
incorporated icy particles formed in the outer Solar Nebula. We calculate the
composition of icy planetesimals formed beyond a heliocentric distance of 5 AU
in the nebula by assuming that the abundances of all elements, in particular
that of oxygen, are solar. As a result, we show that ices formed in the outer
Solar Nebula are composed of a mix of clathrate hydrates, hydrates formed above
50 K and pure condensates produced at lower temperatures. We then consider the
inward migration of solids initially produced in the outer Solar Nebula and
show that a significant fraction may have drifted to the current position of
the Main Belt without encountering temperature and pressure conditions high
enough to vaporize the ices they contain. We propose that, through the
detection and identification of initially buried ices revealed by recent
impacts on the surfaces of asteroids, it could be possible to infer the
thermodynamic conditions that were present within the Solar Nebula during the
accretion of these bodies, and during the inward migration of icy
planetesimals. We also investigate the potential influence that the
incorporation of ices in asteroids may have on their porosities and densities.
In particular, we show how the presence of ices reduces the value of the bulk
density of a given body, and consequently modifies its macro-porosity from that
which would be expected from a given taxonomic type.Comment: Accepted for publication in MNRA
- âŠ