77 research outputs found

    Anomaly in the Tunneling I(V) Characteristics of Bi2212

    Full text link
    Tunneling measurements have been carried out on slightly overdoped Bi2212 single crystals below and above the critical temperature by break-junctions and in-plane point-contacts. An anomaly was found in the tunneling I(V) characteristics. Analysis of the data shows that the anomaly is caused by the superconducting condensate. In the extracted I(V) characteristics of the condensate, the constant asymptotics points to the presence of one-dimensionality in Bi2212. The anomaly found here puts additional constraints on the final theory of high-T_c superconductivity.Comment: 4 pages with 4 figures; replaced by the published versio

    Improvement of Approaches to the Verification of the Vaccine Strain <i>Francisella tularensis</i> 15 NIIEG during Long-Term Storage

    Get PDF
    The aim of the study was to improve the methods for verifying the vaccine strain Francisella tularensis 15 NIIEG during long-term storage under current conditions.Materials and methods. The paper summarizes the results of studying the phenotypic and genetic properties of lyophilized cultures of the vaccine strain F. tularensis 15 NIIEG (1953, 1966, 1969, 1987, 1990, 2003, 2012 and 2013) stored at SCEMAP for a period of one to 60 years.Results and discussion. Previous studies have revealed that freeze-dried cultures of F. tularensis 15 NIIEG generally had the characteristics of the vaccine strain, with the exception of deviations from the regulatory requirements for residual virulence and specific safety. The stability of preservation of deletions in the pilA and pilE genes (the region of differentiation RD19) and the genes encoding lpp lipoprotein (RD18) in the vaccine strain, which was stored for various periods of time in a lyophilized state, has been confirmed. The vaccine-strain-specific mutation C178404T (by the genome of F. tularensis LVS strain, GenBank NCBI no. CP009694) has been identified, and an approach to determine it has been developed. The data obtained are promising as regards using the above deletions in the RD18/RD19 regions in combination with the C178404T mutation to assess the authenticity of the vaccine strain using molecular genetic methods. Thus, the conducted retrospective analysis of the data on the cultures of tularemia microbe vaccine strain from the 1940s to 2013 and the gathered experimental data, made it possible to supplement the uniform requirements for the manufacture, study, maintenance, storage and movement of F. tularensis 15 NIIEG vaccine strain with new evidence. Based on the results obtained, the authors have drawn a draft methodological recommendations of the federal level “Vaccinal strain Francisella tularensis 15 NIIEG: order of handling”

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page

    Technical Design Report for the: PANDA Micro Vertex Detector

    Full text link
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.Comment: 189 pages, 225 figures, 41 table

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
    corecore