16 research outputs found

    Promising 2,6,9-Trisubstituted Purine Derivatives for Anticancer Compounds: Synthesis, 3D-QSAR, and Preliminary Biological Assays

    Get PDF
    We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activityFinancial support was received from FONDECYT (Research Grant N◦ 1161816) and FONDEQUIP program CONICYT EQM 160042, Czech Science Foundation (19-09086S) and Palacky University (IGA_PrF_2019_013) and Xunta de Galicia (ED431C 2018/21) and European Regional Development Fund (Project ENOCH, N◦ CZ.02.1.01/0.0/0.0/16_019/0000868)S

    Unravelling interspecific relationships among highland lizards: First phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae)

    Get PDF
    The South American lizard genus Liolaemus comprises > 260 species, of which > 60 are recognized as members of the Liolaemus montanus group, distributed throughout the Andes in central Peru, Bolivia, Chile and central Argentina. Despite its great morphological diversity and complex taxonomic history, a robust phylogenetic estimate is still lacking for this group. Here, we study the morphological and molecular diversity of the L. montanus group and present the most complete quantitative phylogenetic hypothesis for the group to date. Our phylogeny includes 103 terminal taxa, of which 91 are members of the L. montanus group (58 are assigned to available species and 33 are of uncertain taxonomic status). Our matrix includes 306 morphological and ecological characters and 3057 molecular characters. Morphological characters include 48 continuous and 258 discrete characters, of which 70% (216) are new to the literature. The molecular characters represent five mitochondrial markers. We performed three analyses: A morphology-only matrix, a molecular-only matrix and a matrix including both morphological and molecular characters (total evidence hypothesis). Our total evidence hypothesis recovered the L. montanus group as monophyletic and included ≥ 12 major clades, revealing an unexpectedly complex phylogeny.Fil: Abdala, Cristian Simón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Quinteros, Andres Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Semhan, Romina Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Bulacios Arroyo, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Schulte, James. Belloit College; Estados UnidosFil: Paz, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Ruiz Monachesi, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Laspiur, Julio Alejandro. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Aguilar Kirigin, Alvaro Juan. Colección Boliviana de Fauna; Bolivia. Universidad Mayor de San Andrés; BoliviaFil: Gutierrez Poblete, Ricardo. Universidad Nacional de San Agustín. Facultad de Ciencias Biológicas. Departamento Académico de Biología. Museo de Historia Natural; PerúFil: Valladares Faundez, Pablo. Universidad de Tarapaca.; ChileFil: Valdes, José Julian. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Portelli, Sabrina Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Santa Cruz, Roy. Universidad Nacional de San Agustín. Facultad de Ciencias Biológicas. Departamento Académico de Biología. Museo de Historia Natural; PerúFil: Aparicio, James. Colección Boliviana de Fauna; Bolivia. Universidad Mayor de San Andrés; BoliviaFil: García, Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Langstroth, Robeert. Colección Boliviana de Fauna; Bolivia. Universidad Mayor de San Andrés; Bolivi

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    No full text
    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field

    Water conflicts in Chile - Legal disputes as a proxy

    No full text
    <p>Figure shows the location of water conflicts using legal disputes reaching both Chile's Courts of Appeals and Supreme Court.</p> <p>For this analysis we used all disputes where de Water Authority is one of the parts.</p> <p>Figure shows that the intensity of the conflicts was triggered by three factors: (1) The change in the Water Code in 2005, (2) the rise of Copper price in 2000, and (3) the increment in agricultural land in 2003.</p> <p>We hypothesize that the main driver for conflict is the increasing competition between agriculture and mining in North and Central Chile. This hypothesis is opposing the mainstream thinking that postulates that the main driver is the Water Code.</p> <p>We used a natural language algorithm to automatically extract geographic information from 1000 legal records</p

    A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    No full text
    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field

    Smartbins: Using Intelligent Harvest Baskets to Estimate the Stages of Berry Harvesting

    No full text
    In some important berry-producing countries, such as Chile, the fruit is harvested manually. The markets for these products are generally very distant, and any damage caused to the fruit during harvesting will be expressed in its shelf life. The first step to understanding the harvesting process is to identify what happens to the harvest baskets in each stage (picking, wait-full, transport-full, freezing tunnel, emptying and transport-empty), allowing variables that can affect the shelf life to be identified. This article proposes the use of Smartbins, intelligent harvest baskets with sensors to collect weight, temperature, and vibration data. Combined analysis of the variables collected, using machine learning algorithms, allows the system to estimate which stage the basket is at with an accuracy of 80%, and to assess whether the fruit has been exposed to situations that could affect its shelf life. Due to imbalance characteristics of the data collected, the best results were obtained in longer stages (picking and wait-full stages with 89% and 86% respectively)
    corecore