84 research outputs found

    Research Article

    Get PDF
    Background. Elucidation of a pathogen's antimicrobial susceptibility requires subculture after the organism is first isolated. This takes several days, requiring patients to be treated with broad-spectrum antibiotics. This approach contributes to the development of bacterial resistance. Methods. Microtiter wells were coated with a polyclonal antibody targeting the pathogen of interest. Bacterial suspensions were added in the presence/absence of selected antibiotics. After washing, captured bacteria were detected. Findings. Group B streptococcus (GBS), Enterococcus faecalis, and Neisseria gonorrhoeae were each detected at 10 5 bacteria/mL following a 20-minute incubation period. Susceptibility to select antibiotics was discernable following a 6-hour incubation period (GBS and Enterococcus). Sensitivity was increased to 10 −2 bacteria/mL for GBS, 10 −1 bacteria/mL for E. faecalis, and 10 1 bacteria/mL for N. gonorrhoeae following 18-24-hour culture. Conclusion. This novel assay allows for the highly sensitive and specific identification of a pathogen and simultaneous determination of its antimicrobial susceptibility in a reduced time

    Validação de Dados Anemométricos a Partir de Padrões Espaço-Temporais de Vento em Superfície

    Get PDF
    Diferentes fatores podem comprometer a confiabilidade de dados anemométricos medidos em campo, podendo alterar as medições, tornando-as incorretas. A disponibilização de dados de torres anemométricas requer que estes sejam submetidos a um rigoroso processo de controle de qualidade, cujo objetivo é identificar dados inconsistentes ou suspeitos. O desenvolvimento de um conjunto de critérios de validação destes dados é elemento crítico de sua avaliação. Neste estudo foi aplicado a técnica de análise fatorial em componentes principais (ACP) para avaliar padrões espaço-temporais do campo velocidade do vento em superfície sobre o norte do Nordeste brasileiro, cujo objetivo foi particularizar a variabilidade do regime de vento sobre a região, tornando os critérios de validação mais precisos durante a análise destes. Os resultados mostram que as maiores contribuições do regime eólico ocorrem sobre o litoral Cearense e Potiguar durante o semestre setembro-fevereiro, período menos chuvoso da região. A partir destes resultados foi possível regionalizar os valores fixados nos algoritmos de validação das séries de dados observados, uma vez que passou-se a conhecer seu comportamento sazonal e distribuição espacial

    Inflammasome activation during spontaneous preterm labor with intraâ amniotic infection or sterile intraâ amniotic inflammation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146295/1/aji13049.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146295/2/aji13049_am.pd

    Human βâ defensinâ 1: A natural antimicrobial peptide present in amniotic fluid that is increased in spontaneous preterm labor with intraâ amniotic infection

    Full text link
    ProblemHuman βâ defensins (HBDs) are antimicrobial peptides that participate in the soluble innate immune mechanisms against infection. Herein, we determined whether HBDâ 1 was present in amniotic fluid during normal pregnancy and whether its concentrations change with intraâ amniotic inflammation and/or infection.Method of StudyAmniotic fluid was collected from 219 women in the following groups: (a) midtrimester who delivered at term (n = 35); (b) term with (n = 33) or without (n = 17) labor; (c) preterm labor with intact membranes who delivered at term (n = 29) or who delivered preterm with (n = 19) and without (n = 29) intraâ amniotic inflammation and infection or with intraâ amniotic inflammation but without infection (n = 21); and (d) preterm prelabor rupture of membranes (pPROM) with (n = 19) and without (n = 17) intraâ amniotic inflammation/infection. Amniotic fluid HBDâ 1 concentrations were determined using a sensitive and specific ELISA kit.Results(a) HBDâ 1 was detectable in all amniotic fluid samples; (b) amniotic fluid concentrations of HBDâ 1 were changed with gestational age (midtrimester vs term no labor), being higher in midtrimester; (c) amniotic fluid concentrations of HBDâ 1 were similar between women with and without spontaneous labor at term; (d) among patients with spontaneous preterm labor, amniotic fluid concentrations of HBDâ 1 in women with intraâ amniotic inflammation/infection and in those with intraâ amniotic inflammation without infection were greater than in women without intraâ amniotic inflammation or infection who delivered preterm or at term; and (e) the presence of intraâ amniotic inflammation and infection in patients with pPROM did not change amniotic fluid concentrations of HBDâ 1.ConclusionHBDâ 1 is a physiological constituent of amniotic fluid that is increased in midtrimester during normal pregnancy and in the presence of culturable microorganisms in the amniotic cavity. These findings provide insight into the soluble host defense mechanisms against intraâ amniotic infection.Amniotic fluid concentrations of human beta defensinâ 1 (HBDâ 1) in women with spontaneous preterm labor and intact membranes. Red lines indicate medians with interquartile ranges.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146360/1/aji13031.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146360/2/aji13031_am.pd

    The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/1/aji12827.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/2/aji12827_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142907/3/aji12827-sup-0001-FigS1.pd

    From Bench to Bedside: Evaluation of AHCC Supplementation to Modulate the Host Immunity to Clear High-Risk Human Papillomavirus Infections

    Get PDF
    Objective: There is currently no effective medicine or supplement for clearance of high risk- human papillomavirus (HR-HPV) infections. We have taken a systematic approach evaluating the potential use of AHCC supplementation to support clearance of HR-HPV infections. The primary objective of this research was to evaluate AHCC supplementation to modulation of the host immune system to clear HR-HPV infections from bench to bedside.Methods: Cervical cancer cells, CaSki (HPV16+), HeLa(HPV18+), SiHa(HPV16/18+), and C-33A(HPV−), were treated in vitro with AHCC 0.42 mg/mL daily x7 days then observed x7 days with daily sample collection. A confirmatory study in cervical cancer mouse models, SiHa(HPV16/18+) and C-33A(HPV−), was conducted: mice were divided into three groups per cell line then dosed with AHCC 50 mg/kg/d (N = 10), or vehicle alone (N = 10), or no supplementation (N = 10) for a total of 90 days followed by 30 days of observation. Tumors were measured 3x/week and blood samples collected bi-weekly to evaluate interferon (IFN) alpha(α), beta(β), and gamma(γ) and immunoglobulin G(IgG) by immunoassays. Tumors were evaluated for HR-HPV expression by PCR. Two pilot studies of 10 patients each were conducted in women with confirmed persistent HR-HPV+ infections. The 1st study evaluated AHCC 3g from 5 weeks up to 6 months and 2nd study evaluated AHCC 1g < 8 months. HR-HPV DNA status and the immune panel were monitored at each visit.Results: HR-HPV clearance was observed in vitro and confirmed in the animal studies as a durable response. Four of six (66.7%) patients had confirmed HR-HPV clearance after 3–6 months of AHCC 3g. Similarly, 4 of 9 (44%) patients had confirmed HR-HPV clearance after 7 months of AHCC 1g. Suppression of IFNβ <25 pg/mL was observed in those clearing the HR-HPV infection.Conclusion: Pre-clinical in vitro and in vivo studies demonstrated durable clearance of HR-HPV infections. The preliminary data from the two pilot studies suggested that AHCC supplementation supports the host immune system for successful clearance of HR-HPV infections. A confirmatory phase II randomized, double-blinded, placebo-controlled study is ongoing

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping disparities in education across low- and middle-income countries

    Get PDF
    Analyses of the proportions of individuals who have completed key levels of schooling across all low- and middle-income countries from 2000 to 2017 reveal inequalities across countries as well as within populations. Educational attainment is an important social determinant of maternal, newborn, and child health(1-3). As a tool for promoting gender equity, it has gained increasing traction in popular media, international aid strategies, and global agenda-setting(4-6). The global health agenda is increasingly focused on evidence of precision public health, which illustrates the subnational distribution of disease and illness(7,8); however, an agenda focused on future equity must integrate comparable evidence on the distribution of social determinants of health(9-11). Here we expand on the available precision SDG evidence by estimating the subnational distribution of educational attainment, including the proportions of individuals who have completed key levels of schooling, across all low- and middle-income countries from 2000 to 2017. Previous analyses have focused on geographical disparities in average attainment across Africa or for specific countries, but-to our knowledge-no analysis has examined the subnational proportions of individuals who completed specific levels of education across all low- and middle-income countries(12-14). By geolocating subnational data for more than 184 million person-years across 528 data sources, we precisely identify inequalities across geography as well as within populations.Peer reviewe

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC
    corecore