45 research outputs found

    Effects of forest fragmentation on the vertical stratification of neotropical bats

    Get PDF
    Vertical stratification is a key component of the biological complexity of rainforests. Understanding community- and species-level responses to disturbance across forest strata is paramount for evidence-based conservation and management. However, even for bats, known to extensively explore multiple layers of the complex three-dimensional forest space, studies are biased towards understory-based surveys and only few assessments of vertical stratification were done in fragmented landscapes. Using both ground and canopy mist-nets, we investigated how the vertical structure of bat assemblages is influenced by forest fragmentation in the experimentally fragmented landscape of the Biological Dynamics of Forest Fragments Project, Central Amazon, Brazil. Over a three year-period, we captured 3077 individuals of 46 species in continuous forest (CF) and in 1, 10 and 100 ha forest fragments. In both CF and forest fragments, the upper forest strata sustained more diverse bat assemblages than the equivalent understory layer, and the midstory layers had significantly higher bat abundance in fragments than in CF. Artibeus lituratus and Rhinophylla pumilio exhibited significant shifts in their vertical stratification patterns between CF and fragments (e.g. R. pumilio was more associated with the upper strata in fragments than in CF). Altogether, our study suggests that fragmentation modulates the vertical stratification of bat assemblages

    Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape

    Get PDF
    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, similar to 15 and similar to 30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.Peer reviewe

    Effects of land‐use change on functional and taxonomic diversity of Neotropical bats

    Get PDF
    Human land-use changes are particularly extensive in tropical regions, representing one of the greatest threats to terrestrial biodiversity and a key research topic in conservation. However, studies considering the effects of different types of anthropogenic disturbance on the functional dimension of biodiversity in human-modified landscapes are rare. Here, we obtained data through an extensive review of peer-reviewed articles and compared 30 Neotropical bat assemblages in well-preserved primary forest and four different human-disturbed habitats in terms of their functional and taxonomic diversity. We found that disturbed habitats that are structurally less similar to primary forest (pasture, cropland and early-stage secondary forest) were characterized by a lower functional and taxonomic diversity, as well as community level-functional uniqueness. These habitats generally retained fewer species that perform different ecological functions compared to higher-quality landscape matrices, such as agroforestry. According to functional trait composition, different bat ensembles respond differently to landscape change, negatively affecting mainly gleaning insectivorous bats in pasture, narrow-range species in cropland, and heavier animalivorous bats in secondary forest. Although our results highlight the importance of higher-quality matrix habitats to support elevated functional and taxonomic bat diversity, the conservation of bat species that perform different ecological functions in the mosaic of human-modified habitats also depends on the irreplaceable conservation value of well-preserved primary forests. Our study based on a pooled analysis of individual studies provides novel insights into the effects of different human-modified habitats on Neotropical bat assemblages

    Consequences of a large-scale fragmentation experiment for Neotropical bats : disentangling the relative importance of local and landscape-scale effects

    Get PDF
    Context Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management. Objectives We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient. Methods We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics. Results Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats. Conclusions Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat

    Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography

    Get PDF
    We investigate how variation in patch area and forest cover quantified for three different spatial scales (buffer size of 500, 1500 and 3000 m radius) affects species richness and functional diversity of bat assemblages in two ecosystems differing in fragment–matrix contrast: a landbridge island system in Panama and a countryside ecosystem in the Brazilian Amazon. Bats were sampled on 11 islands and the adjacent mainland in Panama, and in eight forest fragments and nearby continuous forest in Brazil. Species–area relationships (SAR) were assessed based on Chao1 species richness estimates, and functional diversity–area relationships (FAR) were quantified using Chao1 functional diversity estimates measured as the total branch length of a trait dendrogram. FARs were calculated using three trait sets: considering five species functional traits (FARALL), and trait subsets reflecting ‘diet breadth’ (FARDIET) and ‘dispersal ability’ (FARDISPERSAL). We found that in both study systems, FARALL was less sensitive to habitat loss than SAR, in the sense that an equal reduction in habitat loss led to a disproportionately smaller loss of functional diversity compared to species richness. However, the inhospitable and static aquatic matrix in the island ecosystem resulted in more pronounced species loss with increasing loss of habitat compared to the countryside ecosystem. Moreover, while we found a significant FARDISPERSAL for the island ecosystem in relation to forest cover within 500 m landscape buffers, FARDIET and FARDISPERSAL were not significant for the countryside ecosystem. Our findings highlight that species richness and functional diversity in island and countryside ecosystems scale fundamentally differently with habitat loss, and suggest that key bat ecological functions, such as pollination, seed dispersal and arthropod suppression, may be maintained in fragments despite a reduction in species richness. Our study reinforces the importance of increasing habitat availability for decreasing the chances of losing species richness in smaller fragments

    BioTIME 2.0 : expanding and improving a database of biodiversity time series

    Get PDF
    Funding: H2020 European Research Council (Grant Number(s): GA 101044975, GA 101098020).Motivation: Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables: Included The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain: Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain: The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement: The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format: csv and. SQL.Peer reviewe

    Environmental factors are stronger predictors of primate species’ distributions than basic biological traits

    Get PDF
    Understanding the neutral, biological and environmental processes driving species distributions is valuable in informing conservation efforts because it will help us predict how species will respond to changes in environmental conditions. Environmental processes affect species differently according to their biological traits, which determine how they interact with their environment. Therefore, functional, trait-based modelling approaches are considered important for predicting distributions and species responses to change but even for data-rich primate communities our understanding of the relationships between traits and environmental conditions is limited. Here we use a large-scale, high-resolution dataset of African diurnal primate distributions, biological traits and environmental conditions to investigate the role of biological traits and environmental trait filtering in primate distributions. We collected data from published sources for 354 sites, and 14 genera with 57 species across Sub-Saharan Africa. We then combined a three-table ordination method, RLQ, with the Fourth Corner approach to test relationships between environmental variables and biological traits and used a mapping approach to visually assess patterning in primate genus and species’ distributions. We found no significant relationships between any groups of environmental variables and biological traits, despite a clear role of environmental filtering in driving genus and species’ distributions. The most important environmental driver of species distributions was temperature seasonality, followed by rainfall. We conclude that the relative flexibility of many primate genera means that not any one particular set of traits drives their species-environment associations, despite the clear role of such associations in their distribution patterns
    corecore