109 research outputs found
Quantum mechanics and geodesic deviation in the brane world
We investigate the induced geodesic deviation equations in the brane world
models, in which all the matter forces except gravity are confined on the
3-brane. Also, the Newtonian limit of induced geodesic deviation equation is
studied. We show that in the first Randall-Sundrum model the Bohr-Sommerfeld
quantization rule is as a result of consistency between the geodesic and
geodesic deviation equations. This indicates that the path of test particle is
made up of integral multiples of a fundamental Compton-type unit of length
.Comment: 5 pages, no figure
On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation
An almost brief, though lengthy, review introduction about the long history
of higher order gravities and their applications, as employed in the
literature, is provided. We review the analogous procedure between higher order
gravities and GR, as described in our previous works, in order to highlight its
important achievements. Amongst which are presentation of an easy
classification of higher order Lagrangians and its employment as a
\emph{criteria} in order to distinguish correct metric theories of gravity. For
example, it does not permit the inclusion of only one of the second order
Lagrangians in \emph{isolation}. But, it does allow the inclusion of the
cosmological term. We also discuss on the compatibility of our procedure and
the Mach idea. We derive a dimensional dependent version of Duff's trace
anomaly relation, which in \emph{four}-dimension is the same as the usual Duff
relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any}
dimension. The square of the Weyl tensor identically satisfies it independent
of dimension, however, this Lagrangian satisfies the previous relation only in
three and four dimensions.Comment: 30 pages, added reference
Dark energy from conformal symmetry breaking
The breakdown of conformal symmetry in a conformally invariant scalar-tensor
gravitational model is revisited in the cosmological context. Although the old
scenario of conformal symmetry breaking in cosmology containing scalar field
has already been used in many earlier works, it seems that no special attention
has been paid for the investigation on the possible connection between the
breakdown of conformal symmetry and the existence of dark energy. In this
paper, it is shown that the old scenario of conformal symmetry breaking in
cosmology, if properly interpreted, not only has a potential ability to
describe the origin of dark energy as a symmetry breaking effect, but also may
resolve the coincidence problem.Comment: 11 pages, minor revision, published online in EPJ
FRW Cosmology From Five Dimensional Vacuum Brans-Dicke Theory
We follow approach of induced matter theory for 5D vacuum BD, introduce
induced matter and potential in 4D hypersurfaces, and employ generalized FRW
type solution. We confine ourselves to scalar field and scale factors be
functions of the time. This makes the induced potential, by its definition,
vanishes. When the scale factor of fifth dimension and scalar field are not
constants, 5D eqs for any geometry admit a power law relation between scalar
field and scale factor of fifth dimension. Hence the procedure exhibits that 5D
vacuum FRW like eqs are equivalent, in general, to corresponding 4D vacuum ones
with the same spatial scale factor but new scalar field and coupling constant.
We show that 5D vacuum FRW like eqs or its equivalent 4D vacuum ones admit
accelerated solutions. For constant scalar field, eqs reduce to usual FRW eqs
with typical radiation dominated universe. For this situation we obtain
dynamics of scale factors for any geometry without any priori assumption. For
nonconstant scalar fields and spatially flat geometries, solutions are found to
be power law and exponential ones. We also employ weak energy condition for
induced matter, that allows negative/positive pressures. All types of solutions
fulfill WEC in different ranges. The power law solutions with negative/positive
pressures admit both decelerating and accelerating ones. Some solutions accept
shrinking extra dimension. By considering nonghost scalar fields and recent
observational measurements, solutions are more restricted. We illustrate that
accelerating power law solutions, which satisfy WEC and have nonghost fields,
are compatible with recent observations in ranges -4/3 < \omega </- -1.3151 and
1.5208 </- n < 1.9583 for dependence of fifth dimension scale factor with usual
scale factor. These ranges also fulfill condition nonghost fields in the
equivalent 4D vacuum BD eqs.Comment: 18 pages, 16 figures, 11 table
Chameleonic Generalized Brans--Dicke model and late-time acceleration
In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in
the framework of FRW universes. The bouncing solution and phantom crossing is
investigated for the model. Two independent cosmological tests: Cosmological
Redshift Drift (CRD) and distance modulus are applied to test the model with
the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011
Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach
We investigate variations of the Zitterbewegung frequency of electron due to
an external static and uniform magnetic field employing the expectation value
quantum approach, and compare our results with the classical model of spinning
particles. We demonstrate that these two so far compatible approaches are not
in agreement in the presence of an external uniform static magnetic field, in
which the classical approach breaks the usual symmetry of free particles and
antiparticles states, i.e. it leads to CP violation. Hence, regarding the
Zitterbewegung frequency of electron, the classical approach in the presence of
an external magnetic field is unlikely to correctly describe the spin of
electron, while the quantum approach does, as expected. We also show that the
results obtained via the expectation value are in close agreement with the
quantum approach of the Heisenberg picture derived in the literature. However,
the method we use is capable of being compared with the classical approach
regarding the spin aspects. The classical interpretation of spin produced by
the altered Zitterbewegung frequency, in the presence of an external magnetic
field, are discussed.Comment: 16 pages, no figure
Tracking HCV protease population diversity during transmission and susceptibility of founder populations to antiviral therapy
Due to the highly restricted species-tropism of Hepatitis C virus (HCV) a limited number of animal models exist for pre-clinical evaluation of vaccines and antiviral compounds. The human-liver chimeric mouse model allows heterologous challenge with clinically relevant strains derived from patients. However, to date, the transmission and longitudinal evolution of founder viral populations in this model have not been characterized in-depth using state-of-the-art sequencing technologies. Focusing on NS3 protease encoding region of the viral genome, mutant spectra in a donor inoculum and individual recipient mice were determined via Illumina sequencing and compared, to determine the effects of transmission on founder viral population complexity. In all transmissions, a genetic bottleneck was observed, although diverse viral populations were transmitted in each case. A low frequency cloud of mutations ( 1% restricted to a subset of nucleotides. The population of SNVs >1% was reduced upon transmission while the low frequency SNV cloud remained stable. Fixation of multiple identical synonymous substitutions was apparent in independent transmissions, and no evidence for reversion of T-cell epitopes was observed. In addition, susceptibility of founder populations to antiviral therapy was assessed. Animals were treated with protease inhibitor (PI) monotherapy to track resistance associated substitution (RAS) emergence. Longitudinal analyses revealed a decline in population diversity under therapy, with no detectable RAS >1% prior to therapy commencement. Despite inoculation from a common source and identical therapeutic regimens, unique RAS emergence profiles were identified in different hosts prior to and during therapeutic failure, with complex mutational signatures at protease residues 155, 156 and 168 detected. Together these analyses track viral population complexity at high-resolution in the human-liver chimeric mouse model post-transmission and under therapeutic intervention, revealing novel insights into the evolutionary processes which shape viral protease population composition at various critical stages of the viral life-cycle
A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo
Infections with hepatitis C virus (HCV) represent a worldwide health burden and a prophylactic vaccine is still not available. Liver transplantation (LT) is often the only option for patients with HCV-induced end-stage liver disease. However, immediately after transplantation, the liver graft becomes infected by circulating virus, resulting in accelerated progression of liver disease. Although the effi cacy of HCV treatment using direct-acting antivirals has improved significantly, immune compromised LT-patients and patients with advanced liver disease remain difficult to treat. As an alternative approach, interfering with viral entry could prevent infection of the donor liver. We generated a human monoclonal antibody (mAb), designated 2A5, which targets the HCV envelope. The neutralizing activity of mAb 2A5 was assessed using multiple prototype and patient-derived HCV pseudoparticles (HCVpp), cell culture produced HCV (HCVcc), and a human-liver chimeric mouse model. Neutralization levels observed for mAb 2A5 were generally high and mostly superior to those obtained with AP33, a well-characterized HCV-neutralizing monoclonal antibody. Using humanized mice, complete protection was observed after genotype 1a and 4a HCV challenge, while only partial protection was achieved using gt1b and 6a isolates. Epitope mapping revealed that mAb 2A5 binding is conformation-dependent and identified the E2-region spanning amino acids 434 to 446 (epitope II) as the predominant contact domain. Conclusion : mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence represent a valuable candidate to prevent HCV recurrence in LT-patients. In addition, the detailed identification of the neutralizing epitope can be applied for the design of prophylactic HCV vaccines
COPPADIS-2015 (COhort of Patients with PArkinson's DIsease in Spain, 2015), a global--clinical evaluations, serum biomarkers, genetic studies and neuroimaging--prospective, multicenter, non-interventional, long-term study on Parkinson's disease progressio
Background: Parkinson?s disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms that can affect independence, social adjustment and the quality of life (QoL) of both patients and caregivers. Studies designed to find diagnostic and/or progression biomarkers of PD are needed. We describe here the study protocol of COPPADIS-2015 (COhort of Patients with PArkinson?s DIsease in Spain, 2015), an integral PD project based on four aspects/concepts: 1) PD as a global disease (motor and non-motor symptoms); 2) QoL and caregiver issues; 3) Biomarkers; 4) Disease progression.Methods/design: Observational, descriptive, non-interventional, 5-year follow-up, national (Spain), multicenter (45 centers from 15 autonomous communities), evaluation study. Specific goals: (1) detailed study (clinical evaluations, serum biomarkers, genetic studies and neuroimaging) of a population of PD patients from different areas of Spain, (2) comparison with a control group and (3) follow-up for 5 years. COPPADIS-2015 has been specifically designed to assess 17 proposed objectives. Study population: approximately 800 non-dementia PD patients, 600 principal caregivers and 400 control subjects. Study evaluations: (1) baseline includes motor assessment (e.g., Unified Parkinson?s Disease Rating Scale part III), non-motor symptoms (e.g., Non-Motor Symptoms Scale), cognition (e.g., Parkinson?s Disease Cognitive Rating Scale), mood and neuropsychiatric symptoms (e.g., Neuropsychiatric Inventory), disability, QoL (e.g., 39-item Parkinson?s disease Quality of Life Questionnaire Summary-Index) and caregiver status (e.g., Zarit Caregiver Burden Inventory); (2) follow-up includes annual (patients) or biannual (caregivers and controls) evaluations. Serum biomarkers (S-100b protein, TNF-?, IL-1, IL-2, IL-6, vitamin B12, methylmalonic acid, homocysteine, uric acid, C-reactive protein, ferritin, iron) and brain MRI (volumetry, tractography and MTAi [Medial Temporal Atrophy Index]), at baseline and at the end of follow-up, and genetic studies (DNA and RNA) at baseline will be performed in a subgroup of subjects (300 PD patients and 100 control subjects). Study periods: (1) recruitment period, from November, 2015 to February, 2017 (basal assessment); (2) follow-up period, 5 years; (3) closing date of clinical follow-up, May, 2022. Funding: Public/Private. Discussion: COPPADIS-2015 is a challenging initiative. This project will provide important information on the natural history of PD and the value of various biomarkers
- …