495 research outputs found
Exoplanet Detection Synenergy Between Gaia and the WFIRST Coronagraph
Future astrometric detections of exoplanets from the Gaia mission will augment and improve the sample of targets accessible to the Coronagraph Instrument (CGI) on WFIRST. We assessed the joint detection sensitivity of Gaia and WFIRST by modeling random planet populations around nearby (d less than 20 pc), bright (V less than 6) stars, and applying nominal detection thresholds for each mission. Our analysis suggests that only a small number of the new planet detections from Gaia will be favorable for spectroscopic characterization by WFIRST CGI: 1-3 planets, depending on the assumed planet population model. The target stars hosting gas giants detectable to both missions tend to be GK dwarfs with brightness between V = 3-5, and distances within 10 pc. While few in number, these new Gaia-detected exoplanets could be exceptionally valuable targets for WFIRST due to the ability to incorporate astrometric mass estimates into the spectral retrieval of atmospheric parameters
Synthesis and reactivity of 4-oxo-5-trimethylsilanyl derived α-amino acids
A Lewis-acid promoted one-carbon homologation of an aspartic acid semialdehyde with trimethylsilyldiazomethane has led to the efficient synthesis of two silicon-containing α-amino acids. The use of trimethylaluminium or catalytic tin(II) chloride gave novel 4-oxo-5-trimethylsilanyl derived amino acids in yields of 71–88%. An investigation into the reactivity of these highly functional α-amino acids showed that selective cleavage of the C–Si bond could be achieved under mild basic conditions to give a protected derivative of the naturally occurring amino acid, 4-oxo-l-norvaline. Alternatively, Peterson olefination with aryl or alkyl aldehydes resulted in the formation of E-enone derived α-amino acids
Recommended from our members
A Headset Method for Measuring the Visual Temporal Discrimination Threshold in Cervical Dystonia
Background: The visual temporal discrimination threshold (TDT) is the shortest time interval at which one can determine two stimuli to be asynchronous and meets criteria for a valid endophenotype in adult‐onset idiopathic focal dystonia, a poorly penetrant disorder. Temporal discrimination is assessed in the hospital laboratory; in unaffected relatives of multiplex adult‐onset dystonia patients distance from the hospital is a barrier to data acquisition. We devised a portable headset method for visual temporal discrimination determination and our aim was to validate this portable tool against the traditional laboratory‐based method in a group of patients and in a large cohort of healthy controls.
Methods: Visual TDTs were examined in two groups 1) in 96 healthy control participants divided by age and gender, and 2) in 33 cervical dystonia patients, using two methods of data acquisition, the traditional table‐top laboratory‐based system, and the novel portable headset method. The order of assessment was randomized in the control group. The results obtained by each technique were compared.
Results: Visual temporal discrimination in healthy control participants demonstrated similar age and gender effects by the headset method as found by the table‐top examination. There were no significant differences between visual TDTs obtained using the two methods, both for the control participants and for the cervical dystonia patients. Bland–Altman testing showed good concordance between the two methods in both patients and in controls.
Discussion: The portable headset device is a reliable and accurate method for visual temporal discrimination testing for use outside the laboratory, and will facilitate increased TDT data collection outside of the hospital setting. This is of particular importance in multiplex families where data collection in all available members of the pedigree is important for exome sequencing studies
A Datasheet for the INSIGHT Birmingham, Solihull, and Black Country Diabetic Retinopathy Screening Dataset
Purpose: Diabetic retinopathy (DR) is the most common microvascular complication associated with diabetes mellitus (DM), affecting approximately 40% of this patient population. Early detection of DR is vital to ensure monitoring of disease progression and prompt sight saving treatments as required. This article describes the data contained within the INSIGHT Birmingham, Solihull, and Black Country Diabetic Retinopathy Dataset. / Design: Dataset descriptor for routinely collected eye screening data. / Participants: All diabetic patients aged 12 years and older, attending annual digital retinal photography-based screening within the Birmingham, Solihull, and Black Country Eye Screening Programme. / Methods: The INSIGHT Health Data Research Hub for Eye Health is a National Health Service (NHS)–led ophthalmic bioresource that provides researchers with safe access to anonymized, routinely collected data from contributing NHS hospitals to advance research for patient benefit. This report describes the INSIGHT Birmingham, Solihull, and Black Country DR Screening Dataset, a dataset of anonymized images and linked screening data derived from the United Kingdom's largest regional DR screening program. / Main Outcome Measures: This dataset consists of routinely collected data from the eye screening program. The data primarily include retinal photographs with the associated DR grading data. Additional data such as corresponding demographic details, information regarding patients’ diabetic status, and visual acuity data are also available. Further details regarding available data points are available in the supplementary information, in addition to the INSIGHT webpage included below. / Results: At the time point of this analysis (December 31, 2019), the dataset comprised 6 202 161 images from 246 180 patients, with a dataset inception date of January 1, 2007. The dataset includes 1 360 547 grading episodes between R0M0 and R3M1. / Conclusions: This dataset descriptor article summarizes the content of the dataset, how it has been curated, and what its potential uses are. Data are available through a structured application process for research studies that support discovery, clinical evidence analyses, and innovation in artificial intelligence technologies for patient benefit. Further information regarding the data repository and contact details can be found at https://www.insight.hdrhub.org/
A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley
This paper is not subject to U.S. copyright. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 246 (2007): 120-136, doi:10.1016/j.palaeo.2006.10.030.The Hudson Shelf Valley (HSV) is the largest physiographic feature on the U.S. mid-Atlantic continental shelf. The 150-km long valley is the submerged extension of the ancestral Hudson River Valley that connects to the Hudson Canyon. Unlike other incised valleys on the mid-Atlantic shelf, it has not been infilled with sediment during the Holocene. Analyses of multibeam bathymetry, acoustic backscatter intensity, and high-resolution seismic reflection profiles reveal morphologic and stratigraphic evidence for a catastrophic meltwater flood event that formed the modern HSV. The valley and its distal deposits record a discrete flood event that carved 15-m high banks, formed a 120-km2 field of 3- to 6-m high bedforms, and deposited a subaqueous delta on the outer shelf. The HSV is inferred to have been carved initially by precipitation and meltwater runoff during the advance of the Laurentide Ice Sheet, and later by the drainage of early proglacial lakes through stable spillways. A flood resulting from the failure of the terminal moraine dam at the Narrows between Staten Island and Long Island, New York, allowed glacial lakes in the Hudson and Ontario basins to drain across the continental shelf. Water level changes in the Hudson River basin associated with the catastrophic drainage of glacial lakes Iroquois, Vermont, and Albany around 11,450 14C year BP (~ 13,350 cal BP) may have precipitated dam failure at the Narrows. This 3200 km3 discharge of freshwater entered the North Atlantic proximal to the Gulf Stream and may have affected thermohaline circulation at the onset of the Intra-Allerød Cold Period. Based on bedform characteristics and fluvial morphology in the HSV, the maximum freshwater flux during the flood event is estimated to be ~ 0.46 Sv for a duration of ~ 80 days.Support for N. Driscoll was provided by the Office of Naval Research and the National Science Foundatio
V(D)J-mediated Translocations in Lymphoid Neoplasms: A Functional Assessment of Genomic Instability by Cryptic Sites
Most lymphoid malignancies are initiated by specific chromosomal translocations between
immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In
many cases, illegitimate V(D)J recombination has been proposed to be involved in the
translocation process, but this has never been functionally established. Using
extra-chromosomal recombination assays, we determined the ability of several
proto-oncogenes to target V(D)J recombination, and assessed the impact of their
recombinogenic potential on translocation rates in vivo. Our data support the involvement
of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute
lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination
between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional
recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell
non-Hodgkin's lymphomas (B-NHL), are compatible with a process in which only the IgH
locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that
the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency
in normal human thymus, and that the recombinogenic potential conferred by the LMO2
cryptic site is directly predictive of the in vivo level of translocation at that locus.
These findings provide new insights into the regulation forces acting upon genomic
instability in B and T cell tumorigenesis
Bves Modulates Tight Junction Associated Signaling
Blood vessel epicardial substance (Bves) is a transmembrane adhesion protein that regulates tight junction (TJ) formation in a variety of epithelia. The role of TJs within epithelium extends beyond the mechanical properties. They have been shown to play a direct role in regulation of RhoA and ZONAB/DbpA, a y-box transcription factor. We hypothesize that Bves can modulate RhoA activation and ZONAB/DbpA activity through its regulatory effect on TJ formation. Immortalized human corneal epithelial (HCE) cells were stably transfected with Flag-tagged full length chicken Bves (w-Bves) or C-terminus truncated Bves (t-Bves). We found that stably transfected w-Bves and t-Bves were interacting with endogenous human Bves. However, interaction with t-Bves appeared to disrupt cell membrane localization of endogenous Bves and interaction with ZO-1. w-Bves cells exhibited increased TJ function reflected by increased trans-epithelial electrical resistance, while t-Bves cells lost TJ protein immunolocalization at cell-cell contacts and exhibited decreased trans-epithelial electrical resistance. In parental HCE and w-Bves cells ZONAB/DbpA and GEF-H1 were seen at cell borders in the same pattern as ZO-1. However, expression of t-Bves led to decreased membrane localization of both ZONAB/DbpA and GEF-H1. t-Bves cells had increased RhoA activity, as indicated by a significant 30% increase in FRET activity compared to parental HCE cells. ZONAB/DbpA transcriptional activity, assessed using a luciferase reporter probe, was increased in t-Bves cells. These studies demonstrate that Bves expression and localization can regulate RhoA and ZONAB/DbpA activity
- …