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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/reality/klarigi Annotation of biomedical entities with ontology classes provides for formal semantic analysis and mobilisation
» https://github.com/reality/Klarigi of background knowledge in determining their relationships. To date, enrichment analysis has been routinely

employed to identify classes that are over-represented in annotations across sets of groups, such as biosample

I;zilv:irt(ii:explanation gene expression profiles or patient phenotypes, and is useful for a range of tasks including differential diagnosis
Ontology and causative variant prioritisation. These approaches, however, usually consider only univariate relationships,
Semantic analysis make limited use of the semantic features of ontologies, and provide limited information and evaluation of
Enrichment analysis the explanatory power of both singular and grouped candidate classes. Moreover, they are not designed to
Phenotypes solve the problem of deriving cohesive, characteristic, and discriminatory sets of classes for entity groups.
Explicability We have developed a new tool, called Klarigi, which introduces multiple scoring heuristics for identification
Phenotype profiles of classes that are both compositional and discriminatory for groups of entities annotated with ontology

classes. The tool includes a novel algorithm for derivation of multivariable semantic explanations for entity
groups, makes use of semantic inference through live use of an ontology reasoner, and includes a classification
method for identifying the discriminatory power of candidate sets, in addition to significance testing apposite
to traditional enrichment approaches. We describe the design and implementation of Klarigi, including its
scoring and explanation determination methods, and evaluate its use in application to two test cases with
clinical significance, comparing and contrasting methods and results with literature-based and enrichment
analysis methods. We demonstrate that Klarigi produces characteristic and discriminatory explanations for
groups of biomedical entities in two settings. We also show that these explanations recapitulate and extend
the knowledge held in existing biomedical databases and literature for several diseases. We conclude that
Klarigi provides a distinct and valuable perspective on biomedical datasets when compared with traditional
enrichment methods, and therefore constitutes a new method by which biomedical datasets can be explored,
contributing to improved insight into semantic data.
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Background

The power of ontologies for representation of biomedical data has
lead to ontological annotation becoming a preferred method for the
characterisation of large biomedical datasets [1,2]. Increasingly, do-
mains such as medicine are adopting ontologies for annotation, ag-
gregation, and analysis of patient data, opening up new methods for
analysis hitherto unavailable using standard terminologies and nosolo-
gies [3]. The ability to link data to these symbolic representations
reduces inaccuracy and ambiguity, and permits integration with back-
ground knowledge through contextual aggregation. As such, biomed-
ical ontologies and their instance data constitute a massive source of
formalised knowledge.

This repository of formalised knowledge greatly facilitates sec-
ondary use, taking advantage of the semantic features of ontologies
to integrate and explain the large and multi-modal datasets annotated
with them. This is typically used for the purposes of ontology-based
data access, integration, and preparation, enhancing standard Extract
Transform Load (ETL) processes [4,5]. In addition, semantic analysis
methods are now applied to many knowledge synthesis and classifi-
cation tasks, including prediction of protein-protein interactions and
identification of rare disease genetic variants [6]. In the clinical space,
semantic methods have been applied to tasks including diagnosis of rare
and common diseases [7,8] and identification of subtypes of diseases
such as autism [9]. In addition, the synthesis of classical ontology-based
methods and machine learning (ML) is seen as increasingly powerful
[10].

Of great importance to the trust in, and consequently willingness
to adopt, new analytical methods on the part of both the medical
profession and the public, is the problem of explainability [11]. While
application of a machine learning (ML) algorithm can generate a classi-
fier based on large amounts of data, for example in patient population
stratification, current methods make understanding the clinical basis
for classification difficult. Despite the increasing use of semantics in
biomedical analysis, the subsequent derivation of semantic explana-
tions for classifications, outcomes, labels, or groups generated by those
analyses, remains a challenging task, and a major practical, ethical,
and technical issue [12,13]. This is a problem for any new algorith-
mic approach, though current discussion has centred on the new ML
approaches emerging in the health sciences.

We define the task of semantic explanation as the identification of
characteristic sets of classes for groups of entities described by ontology
classes. What constitutes a characteristic set of classes depends upon the
parameters of a particular investigation, but can most often be defined
by classes that are some combination of explanatory, compositional,
and discriminatory.

One traditional approach to semantic explanation is enrichment
analysis. For example, and most prominently, gene set enrichment
analysis (GSEA) identifies classes that are significantly over-expressed
in a set of genes [14]. Enrichment analysis techniques have also been
used to explore over-representation of terms in groups of entities asso-
ciated with other datasets and ontologies [15,16]. There are, however,
multiple drawbacks to the use of enrichment analysis methods for
semantic explanation:

Traditional enrichment methods using a univariate statistical test
provide limited information about the relationship of each ex-
planatory term with the group of interest.

They usually do not consider the multivariate contribution of
sets of terms to a non-redundant characterisation of the group of
interest.

Most make little or no use of the semantic features of ontologies,
or information-theoretic methods of evaluating candidate terms.
They provide limited tools and metrics for evaluation of the
overall explanatory power of groups of terms with respect to the
group of interest.
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+ They can be difficult or impossible to use with non-preconfigured
ontologies, and often have a dedicated focus on the Gene Ontol-
ogy (GO) [17].

Most methods include built-in calls to a single ontology: fgsea [18],
GSEABase [19], and GREAP [20] leverage GO; DOSE [21] imple-
ments the Disease Ontology; ReactomePA makes use of the Reactome
pathway database [22], with several recent works centring pathway
enrichment [23-25]; MamPhea [26] uses the Mammalian Phenotype
Ontology. Other methods implement multiple ontologies as packages
or online tools, including DAVID [27], GProfiler [28], and XGR [29].

Of these, only XGR allows users to provide their own custom
ontology, and this must be a graph object mutated from an OWL
file. Additionally the XGR package is the only one of these which
does not explicitly rely on pre-populated, species-specific gene-ontology
annotation databases. This limits analyses to both species-specific ques-
tions and to genes or gene products, and these tools have little direct
relevance to non-genetic translational medicine. In traditional GSEA,
ranking genes in order of relevance of biological assays and defining
a function as the number of genes above that sorted list, can be
formulated as a random walk along sorted features. This approach
implements multiple sorted lists from multiomics experiments and
implements joint random walks among assays. Another recent devel-
opment uses Bayesian regression to model the relationship between
phenotypes and the proportion of patients in a population with rare
alleles, and interpreting the probability of associations being equal or
depending on the phenotypic similarity of the patients with rare alle-
les [30]. This approach requires informed assumptions about existing
gene/phenotype relationships in literature to weight priors. All of these
methods are specific to the genetic domain, and cannot therefore be
easily applied to other kinds of biomedical data.

While methods do exist to help correct for the dependence of sta-
tistical tests on related ontology classes, these post-hoc corrections do
not take full advantage of the ontology to make inferential associations.
Some methods such as XGR [29] and Func [31] do take ontology
structure into account, with both requiring preprocessing beforehand
if using ontologies other than GO (Func) or using ontologies outside a
predefined set or without pre-computed annotation databases (XGR). In
particular, OntoFunc provides inferential preprocessing for Func [32].
Recent Bayesian approaches to ontology enrichment likewise make
use of ontology structure, but require additional numerical data to
construct informative priors [33], or are restricted to GO [34].

Furthermore, most enrichment approaches consider only univariate
relationships for individual terms; some investigations have approached
multivariable enrichment, with one using a random walk approach
on omics datasets [35], and another relying on pre-processing into
principal components [36].

Moreover, enrichment methods are not intended to identify full and
cohesive sets of characteristic terms for groups of annotated entities,
and these methods therefore provide a limited solution to the task of se-
mantic explanation. We propose to solve these problems by developing
a new method for semantic explanation.

The method introduces metrics for quantification of multiple aspects
of the relationship between classes, sets of terms, and groups of an-
notated entities. These include a configurable measure of information
content, facilitating the involvement of information theoretic methods
of evaluating candidates. This is combined with a new algorithm for
derivation of multivariable explanatory sets of terms, optimised for
discrimination and/or composition. The method makes use of ontolog-
ical inference via an ontology reasoner, and can be used directly with
any consistent Ontology Web Language (OWL) ontology without pre-
processing. We also include native support for the Phenopacket format
[37] to facilitate efficient use for large-scale import any analysis of
clinical phenotype data. To provide additional ability to determine the
discriminatory power of explanatory sets, it also includes a classifica-
tion method that can be re-applied to the given dataset, or applied
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to unseen data. In aggregate, these features address the limitations of
traditional enrichment approaches, while also providing similar infor-
mation through the implementation of permutation-derived p-values
for univariate scoring metrics.

In this work, we formally describe the method and its implemen-
tation. We discuss existing approaches and their potential limitations,
explaining how our proposed approach solves these problems. We
then describe development of the tool, called Klarigi, that implements
the method, resulting in an analysis framework that can be used to
explore semantic datasets. The name of the implementation, ‘Klarigi,’
is adopted from the Esperanto word meaning ‘to explain.” The work is
related to a previous investigation, which describes an early version of
the approach described in the context of a cluster explanation algorithm
developed for a particular application [38]. In this work, the approach
is heavily modified and improved upon, including many changes to
the algorithm and scoring system, additional features for characteristic
and discriminatory analysis, and a formal description of the design, in
addition to its implementation and evaluation in the form of a generally
applicable software framework. These modifications are described in
more detail throughout the manuscript.

To evaluate our approach, we develop two use-cases for character-
isation of patient populations. We compare and contrast the results of
the analysis with those of an enrichment analysis, and compare with
existing literature and manually curated biomedical databases as gold
standard. In doing this, we show that Klarigi can be used to generate
insights into biomedical datasets via semantic explanation, providing
a perspective that is both distinct and complementary to the use of
enrichment analysis.

Design and implementation

The fundamental challenge of semantic explanation is to deter-
mine, given a set of groups, and sets of entities described by ontology
classes associated with those groups, a set of characteristic classes for
each group. Since we developed this approach to be applicable to
any biomedical ontology, we will describe it, including a data model
and algorithms, in abstract terms first. We will then describe their
implementation into the Klarigi tool.

Data modelling

Klarigi aims to determine sets of classes that characterise a group
of entities annotated by ontology classes. Doing this requires, at mini-
mum, a corpus with three features:

1. A set of entities, each associated with a set of ontology classes.
2. A set of groups, which are each associated with a set of entities.
3. An OWL ontology describing all classes in the corpus.

We can define these as sets, which will allow us to define metrics
and heuristics on their contents. G is a set of groups, where G; is the
set of entities ascribed to the group i. E is a set of entities, where E;
is the set of classes associated with entity j. O is a set of classes in the
ontology, where O, is a class in the ontology.

To illustrate concepts throughout this section, we will define an ex-
ample corpus. For argument, we have 1000 patient phenotype profiles,
all described by classes from the human phenotype ontology, HPO [39].
All of these patients have been diagnosed with either pulmonary em-
bolism or pneumonia, and we are interested in characterising and
distinguishing between those diseases based on information from the
phenotype profiles. To represent this in our data model above, we con-
sider patients to be our entities, and E will be populated with the set of
phenotype profiles associated with each patient. O is populated with all
classes in HPO, since this is the ontology used to describe the patients.
If we are interested in characterising these two diagnoses, we could
create a data model with two groups in G, pulmonary embolism and
pneumonia, identifying the patients. In this case, entities are patients or
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patient profiles, and so E would be populated with the set of phenotype
profiles associated with each patient. The elements of G define sets that
identify patients in E with each disease. Note that these groups are
not mutually exclusive, however for simplicity in this example we will
consider that each patient belongs to either the pulmonary embolism or
pneumonia group.

Metrics

To identify ‘useful’ sets of explanatory classes for groups, we need to
balance multiple qualities of the relationship between candidate classes
and the group. Specifically, we want to identify classes that are, in
comparison with other candidates:

Compositional Associated with greater proportion of entities in the
considered group.

Discriminatory More associated with entities in the considered group
than in other groups.

Informative More specific.

Linking this with our example, the first item concerns identifying
HPO classes that appear in a greater proportion of the phenotype
profiles for either disease. The second concerns classes that appear in
phenotype profiles for one disease more so than another. The third
determines how informative or specific a class is; for example, general
cardiovascular symptoms are less specific than particular symptoms like
atrial fibrillation.

To quantify these qualities and thus make them comparable, we
define three univariate scores to measure them, encoding numeric
measures of the explanatory power of each candidate class for the given
group. We first define a simple function that enables us to determine
whether or not a particular entity in the corpus is annotated with a
class (or any of its subclasses):
member(C, N) = {1 ICaN|>0. )

0 otherwise

Given two sets C and N, any two sets of ontology classes, this
function returns 1, if the size of the intersection of those sets is at
least 1, and 0 otherwise. This allows us to identify whether any classes
associated with a particular entity include our candidate class. Using
this function, we can then define the first score, inclusion:

E
Z‘ l member(subclass(O,), E,)

z=1
2€G;

@

inclusion(O,, G;) |Gj |

This score measures the proportion of entities in a given group that
are annotated with either the candidate term or any of its subclasses.
The subclass function is a call to the ontology reasoner, and returns a
set of all transitive subclasses of the class passed as argument, including
the original class. This enables the account of the deductive inferences
made by the ontology reasoner, entailed by the axioms asserted in the
considered ontology. For example, if 250 of 500 phenotype profiles in
the pneumonia group were associated with supraventricular ar-
rythmia (HP:0005115) or any of its subclasses, the inclusion score
for supraventricular arrythmia (HP:0005115) with respect
to pneumonia would be 0.5. As such, this measure is a quantification
of membership proportion enhanced by the notion of subsumptive
hierarchy in the ontology, either explicitly asserted or inferred by the
reasoner.

We next measure how uniquely a candidate class characterises the
considered group, or its over-representation in the group with respect
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to others. Our previous work [38] defined a measure of exclusion

(exclusion,;,;) as:
19 SEL member(subclass(0;). E,)

X#] YEG

exclusion ; ;(0;,G;) =1 — 3
01d(0;, G;) ZLGJI G 3
X#j

This provides an inverse measure of the proportion of entities
annotated with the class that are attributed to other groups: the fewer
entities external to the considered group that are annotated with the
class, the greater the exclusion score. For example, in the case of a
dataset with 700 pneumonia patients and 300 pulmonary embolism
patients and an inclusion of 0.5 for a particular phenotype in both
groups, the exclusion score would be 0.5 in both cases: equal to one
minus the inclusion score of the phenotype for the other group, which
captures the overall absolute equality, though is unintuitive in its
provision of a non-zero value.

In GSEA, measurement of comparative expression is usually
achieved by an enrichment score, which is usually defined by z-scores
and/or odds and relative risk ratios, that measure the strength of associ-
ation between the class and group membership; the ratio of B given the
presence of A, and its symmetric inverse. However, their interpretation
is challenging due to the behaviour of ratios and confusion between
odds, relative, and absolute risk [40]. In the above example, the relative
risk of both pneumonia and pulmonary embolism would be 1. However,
this can become misleading in the presence of larger class imbalances
[41]. For example, if we had 950 cases of pneumonia, and 50 cases
of pulmonary embolism. If a phenotype appears thrice in this dataset,
and two of those are associated with pulmonary embolism, we would
get the extremely large values of 37.96 and 39.54 for relative risk and
odds ratio respectively. This example also illustrates the limitation of
the exclusion,; score, which would be 0.96 for pneumonia and 0.998
for pulmonary embolism, capturing in both cases the low prevalence
of the class in the other group. While these are valid associations,
they do not take into account the absolute risk of the event occurring
with respect to the disparity in the group sizes, and so large values
are given for uncommon and unlikely phenotypes, which can be easily
misinterpreted. To address this issue, we define exclusion as:

2“11 member(subclass(O,), E,)
|G,
exclusion(0;,G;) = ] 7 4)

- _
ZL=|1 member(subclass(O,), E.) |E|

In this measure, the proportion of entities associated with the class
that belong to the considered group is determined. From this figure,
the proportion of the total entities in the dataset that are associated
with the considered group is subtracted. This measures the exclusive
representation of the class in the group versus the representation of
the group in the overall population, and can be explained in terms
intuitively similar to the calculation of an odds ratio: the odds of the
event occurring in the exposed group minus the odds of exposure.

As such, it reflects the representation of a class in a considered
group, balanced with the absolute likelihood of the group appearing
in the whole dataset. In the example above, the exclusion score for
the phenotype with 0.5 inclusion with respect to both pneumonia and
pulmonary embolism would be 0. This is because neither are more ex-
clusively associated with the phenotype when their relative frequencies
are taken into account. In the latter example, our proposed phenotype
association profile would lead to pulmonary embolism receiving an
exclusion score of 0.617 and pneumonia an exclusion score of —0.617.
These scores express the exclusivity of a phenotype’s association with
a group in the context of the overall appearance of the group in
the dataset, providing a more intuitive metric for whether a class
exclusively characterises entities in a group.

We further address the problem of balancing the internal and ex-
ternal characteristic power of candidate classes by introducing an
additional heuristic to provide a balanced measure of our previously
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defined inclusion and exclusion scores. We note that the inclusion score
is equivalent to the ‘absolute risk’ of the class being associated with
an entity in the given group. On the basis of those two scores, we can
further define:

inclusion(O,, Gj) - exclusion(O,, Gj)

5
inclusion(O,, Gj) + exclusion(Oy, Gj) ®

r-score(Oy,G;) =2+

In the case of our latter example with a large class imbalance, our
inclusion score for pulmonary embolism is 0.04, while it is 0.001 for
pneumonia. Our r-scores would then be 0.075 and 0.002, respectively.
This provides a balanced metric between the internal representation of
the class in the group, and its external exclusivity in the context of the
larger dataset. Since both figures are taken into account, the r-score
metric avoids extreme and potentially misleading values of z-score and
odds ratio, which are also unhelpful for identification of characteristic
classes.

In the case where the program is being used with a corpus that only
describes a single group, the r-score measure is alternatively defined as
equivalent to inclusion (note that the program can be forced into this
mode, see ‘exclusive group loading’ later). In this case, the algorithm
does not consider exclusion at all, and only provides solutions in the
context of inclusion — describing the internal composition of the group.

To test our third quality, we introduce a measurement of how
informative or specific a candidate class is. Since this score does not
rely on any relationship between groups and entities, it is calculated
only once per ontology class:

speci ficity(O,) = IC(O,) 6)

Specificity is defined as the result of a particular information con-
tent measure. These provide an information-theoretic numerical mea-
sure for how informative a particular class in an ontology is, and
are provided through the Semantic Measures Library [42], which im-
plements many different information content measures. Currently, a
choice between the Zhou [43] and Resnik [44] measures is available,
which are defined as:

[1(x)] log(deep(x))
1 1(T)| log(deep,,,.)

The Resnik measure is defined as the reverse log probability of the
class appearing in the corpus, and will therefore be greater for classes
that are annotated to entities more infrequently. For example, using
the Resnik measure, the speci ficity would be greater for arrythmia
(HP:0011675) would be greater the less frequently it appears in
phenotype profiles associated with any group throughout a corpus.
Meanwhile, the Zhou method is a measure of how deep the given class
is when representing the ontology as a directed acyclic graph, calcu-
lated as a proportion of its maximum depth. Therefore, classes that are
deeper in the ontology will have more intermediate subsuming classes
between them and the root class, and as a result will receive greater
values. For example, using this measure, supraventricular ar-
rythmia (HP:0005115) would receive a greater specificity score
than arrythmia (HP:0011675), since it is deeper in the ontology
than the former. In all cases, the score for a single class would be
equivalent, independent of which group is currently being considered.
We chose these two frequently-used information content measures to
provide the choice between a statistical method of measuring specificity
(Resnik) and one dependent on the ontology structure (Zhou), with the
best choice potentially differing depending on the dataset, ontology, or
intended results [45]. These are also known as extrinsic and intrinsic
measures, respectively.

ICResnik(x) == IOg( )ICZhou(X) = )

Scoring

Now that we have defined a number of measures for the explanatory
power of candidate discriminating classes, the next steps depend upon
identifying and scoring candidate classes in the relevant biomedical
ontology. At this stage, we load and classify the ontology, verifying
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internal consistency and reflecting any structural inferences. Klarigi
uses the ELK reasoner to perform this task [46], which supports the ££
subset of OWL. Since we sought to support a maximal number of on-
tologies, datasets, and settings, we chose ELK since it ensures maximum
polynomial time classification with respect to the number of axioms in
the ontology. Since Klarigi is implemented using OWLAPI [47], how-
ever, use with more expressive reasoners can be easily implemented,
or ontologies can be pre-processed before passing to Klarigi.

While scores can be derived, theoretically, for all classes in the
biomedical ontology, in practice this is not necessary. This is because
only classes that subsume classes appearing in our corpus can receive
inclusion and exclusion scores above zero. We can therefore define a
new set of candidate terms C, the set of candidate terms in the ontology
that we will score, as a subset of O:

C = {x € O | 3,cgmember(subclass(0,), E,)} 8)

In practice, this is implemented more efficiently by iterating directly
all classes appearing explicitly in the annotation corpus and identifying
their transitive superclasses. Once C is determined, the scores are
calculated as above for each combination of group and candidate class,
excepting for specificity where the score is calculated only once per
class.

Candidate restriction and univariate analysis

We have now created the set of C candidate explanatory classes,
which consists of the set of all classes that either directly annotate, or
subsume classes that directly annotate, all entities in the corpus. The
next step is to identify characteristic candidate variables for each group
of interest. We do this by creating a new set U; for each group:

U, = {x € C | r-score(O,, G;) >= min-r-score A inclusion(O,, G;) >= min-inclusion
A exclusion(O,, G;) >= min-exclusion A speci ficity(O,) >= min-ic}
©)

This new subset U; can be determined for each group, and contains
a subset of the C candidate classes that meet the set of minimum
restrictions for each score in relation to the considered group: r-score,
inclusion, exclusion, and specificity. The process up to this stage con-
sists the univariate mode of operation for Klarigi. At this point, the
set U; can be output for a group of interest, and subsequently inter-
preted. The minimum cut-offs for scores are controlled by configurable
parameters, described in Table 1.

Multivariable explanatory sets

In addition to the univariate mode of operation, we also determine
an additional method to identify sets of candidate terms that together
characterise the group of interest. To do this, we can consider a solution
space S, where S, is any potential subset of U;, the set of candidate
classes that meet the minimum cut-offs for the univariate scores. Our
goal is to identify such an .S, that is a ‘good’ characterisation of entities
in the group. To identify what constitutes a good characterisation of
the group, we turn to our previously defined scores. For the purposes
of our solution, we only consider r-score and specificity to evaluate
the explanatory power of individual terms, relying on the ability of
r-score to balance between inclusion and exclusion scores. To evaluate
the overall fitness of a set of terms .S,,, we define an additional heuristic:

Z‘lel member(subclass(S.), E,)
z€Gj

(10)

overall_inclusion(S.,G;) =

_ (S..G)) Gl

This is a measure of overall inclusion, the proportion of entities in

the group of interest that are annotated by at least one of the classes

in the proposed solution, or their subclasses. This measures how well a
set of candidate classes covers the full set of entities in the group.
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Table 1

Names, descriptions, and default parameters for candidate class restrictions. These
parameters define minimum values for the scoring heuristics, which restrict the set of
candidate variables that will appear in the univariate analysis output, and be considered
in the multivariable analysis stage. These default values were set based upon our
observations using the algorithm, and are configurable by the user.

Parameter Default Description

min-inclusion 0 Candidate terms with inclusion values
below this level will not appear in, or
contribute to, explanatory sets.

min-exclusion 0.05 Candidate terms with exclusion values
below this level will not appear in, or
contribute to, explanatory sets.

min-r-score 0.1 Candidate terms with r-score values below
this level will not appear in, or contribute
to, explanatory sets.

min-ic 0.4 Candidate terms with information content

values below this level will not appear in,
or contribute to, explanatory sets.

The challenge of obtaining a good solution lies with the optimisation
of several variables, and can therefore can be considered as a multiple
objective optimisation problem, considering the scoring heuristics as
objective functions. The objective functions can be defined as the cut-
offs for our scores. In the case of scores that measure the explanatory
power of individual terms, this is the cut-off for candidate terms to
appear in .S, while the overall_inclusion function can be defined as the
cut-off for S to be considered acceptable.

This can be considered in terms of the e-constraints solution to
multiple objective optimisation problems. In these solutions, one ob-
jective function is retained, while the rest are transformed into a set
of constraints between which the remaining objective function can be
optimised [48]. Our solution is inspired by this approach, selecting
overall_inclusion as the objective function. However, instead of using
static constraints for the other cutoffs, we develop an algorithm that
steps down through acceptable values of these constraints in a priority
order to dynamically identify high values for constraints in the context
of objective function optimisation.

To do this, we define an order of priority for parameters:

1. overall_inclusion
2. r-score
3. specificity

The objective function can be considered as the highest priority
constraint (and is also one that has no lower boundary). To identify
a solution that maximises overall_inclusion, while optimising the other
values within their configured boundaries, the algorithm steps down
through acceptable values of each constraint in order of priority, from
lowest to highest. overall_inclusion is chosen as the objective function
because it is the only measure that encodes the overall characteristic
quality of a set of candidate terms, while r-score is placed second due
to its encoding of the more specific compositional and discriminatory
information concerning the relationships between classes and groups,
while speci ficity is retained at the lowest priority, as it provides ad-
ditional background information concerning the terms, which in most
cases will be less directly relevant to characterisation of the groups than
the other measures.

A satisfactory solution is defined as a set of ontology terms that
meets a current minimum value for overall_inclusion, and in which
every member meets the current minimum constraint for r-score and
speci ficity. Upon each step of the algorithm, the subset of classes that
meet the current individual criteria is identified, and if that set meets
the current cutoff for overall_inclusion, this is returned as the solution.
If not, the current constraint settings are stepped down in order of
priority, with a new check for a satisfactory solution at each step.
First, the cut-off for r-score is reduced stepwise to its lower limit, at
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which point the cut-off for speci ficity will be reduced by one step, and
the cut-off for r-score will be reset. Once both r-score and speci ficity
reach their lower limits, they are reset to their original values, and
the overall_inclusion cut-off will be reduced by one step. This process
is repeated until a satisfactory solution is found, checked every time
a constraint is changed, or until the overall_inclusion cutoff reaches
zero (a null response). The result of this process is a set of terms
Sy00qs @ subset of C, that both maximises the value of the objective
function, and maximises values of the constraints according to the order
of priority. The algorithm is given in Algorithm 1. The time complexity
of the stepdown algorithm is linear with respect to the number of
candidate classes in U;; every class in U; will be examined once each
time the constraints are reduced. In the worst case, where no solution
is found, this will be (fop — total — inclusion - step) - (((top — r — score —
bot — r — score) - step) - ((top — ic — bot — ic) - step)) times.
Data: Refer to Table 2.
Result: A set of ontology terms that explanatory of the cluster.
specificityCutoff = top-ic
r-scoreCutoff = top-r-score
totallnclusionCutoff = top-total-inclusion
while True do
S, ={x €U, | rscore(0,,G;) >=
rScoreCutof f A specificity(O,) >= speci ficityCutof f'}
Spm = {x €S, | r-score(O,, G;) >= max-r-score A
speci ficity(O,) >= max-specificity A inclusion(Oy, G;) >=
max-inclusion A exclusion(O,, G;) >= max-exclusion}
if overall_inclusion(S ,,, G;) < total InclusionCutof f then

if rScoreCutof f <= bot — rScore then
rScoreCutof f = top — rScore

if specificityCutof f > bot — ic then
‘ speci ficityCutof f = specificityCutof f — step
else
speci ficityCutof f = top — ic
total InclusionCuto f f = total InclusionCutof f — step
rScoreCutof f = rScoreCutof f — step
return S
Algorithm 1: Algorithm for identifying characterising ontology
terms for a cluster, by stepping down through r-score and
specificity thresholds.

The algorithm also supports maximal constraints, that are used to
define the maximum score at which a candidate term can contribute to
the overall_inclusion score. This is implemented in Algorithm 1 as the
determination of the S, subset of the proposed solution S,,. By default,
they are set to values that will not be triggered (shown in Table 2), but
they can be configured to prevent the result set being dominated by a
small number of highly explanatory classes, where a larger and more
varied set is desired. For example, the appearance of the term hyper-
tension (HP:0008071) at 0.95 inclusion for a group defined by a
diagnosis of hypertension may not be very informative. Thus setting an
upper limit to score values that can contribute to overall_inclusion will
force the algorithm to continue to step down to find additional explana-
tory terms. Since these terms still characterise the group, however, they
are still included in the explanatory set, and are therefore included in
the output (and included in the final overall_inclusion value associated
with the output). These upper parameters can be used to encourage the
algorithm to seek larger, less monolithic explanatory sets.

While the upper and lower boundaries for cut-offs are configurable,
reasonable defaults have been set based on our observations using the
algorithm. These can be defined for any of the term-wise scores: r-score,
inclusion, exclusion, and speci ficity.

Discrimination and significance

On top of the univariate and multivariate modes of producing ex-
planatory sets of classes for groups, we have also implemented several
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Table 2

Descriptions and default values for multivariable parameters for the stepdown algo-
rithm. These default values were set based upon our observations using the algorithm,
and are configurable by the user.

Parameter Default Description

max-exclusion 1 Candidate terms with r-score values above
this level will not contribute to calculation
of overall inclusion, though they will still
appear in explanatory sets.

max-inclusion 1 Candidate terms with r-score values above
this level will not contribute to calculation
of overall inclusion, though they will still
appear in explanatory sets.

max-r-score 1 Candidate terms with r-score values above
this level will not contribute to calculation
of overall inclusion, though they will still
appear in explanatory sets.

top-ic 0.7 The maximum stepdown value for IC.

bot-ic 0.4 The minimum stepdown value for IC.

top-r-score 0.8 The maximum stepdown value for r-score.

bot-r-score 0.1 The minimum stepdown value for r-score.

top-total-inclusion 1 Maximum stepdown value for overall
inclusion.

step 0.05 Cutoffs will be reduced by this step on each

iteration of the stepdown algorithm.

additional methods by which the fitness of solutions can be evaluated.
To identify the discriminatory power of a set of explanatory classes,
we can define a function that will, for each combination of entity and
group in the corpus, produce a score:

1511
score(E;, G}, S)) = H(l + (exclusion(Oy, G;) - member(subclass(O,), E;)))

x=1

an

This score can either be calculated on the results of the multivari-
able stepdown approach, the full set of univariate results, or a manually
specified list of term associations. In the case that we are using the
univariate mode of execution only, S; will be equivalent to U;. Given
a proposed solution for a group, consisting of a set of classes, a score is
calculated for each entity in the corpus, defined as the product of one
plus the exclusion score of every class in the solution set that the entity
is annotated with.

This definition of a predictive score allows us to construct a model to
classify group membership for entities, from which an Area Under the
receiver operating Characteristic (AUC) score can be calculated. This
provides a simple measure of how well the set of explanatory variables,
univariate or multivariate, was able to reclassify the set it was learned
from. This can help to inform modifications to parameters or judge
quality of the dataset in general.

The difference between these scores between the univariate and
multivariate results can also provide insight on the quality of the mod-
ularisation performed by the stepdown algorithm. In the case that this
value is small, there is a small amount of loss of total discrimination.
Where values are large, there is a large decrease in performance when
restricting scoring to the derived set of characteristic values, and this
may be caused by a model that is poorly fit to the training data and does
not reflect the full dataset. The program also contains the possibility to
apply this classifier to unseen data, calculating an AUC in the same
way. This provides the ability to perform a test-set validation, or even
external validation, to more properly judge the quality of the solution.
Where this approach is applied to a new dataset, the exclusion score
used is the one learned from the training corpus.

The second method of results evaluation is significance testing.
In many instances, it is useful to access the type 1 error (false pos-
itive) rate to enable comparison with existing tools which provide
p-values, and also to provide a conservative aid to interpreting inclusion
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and exclusion results. We implemented standard Monte Carlo methods
to approximate the empirical p-value of the inclusion and exclusion
statistics [49,50]. Briefly, we sample with replacement a set of class
associations for each entity of the same size as its original association
set.

A test statistic (inclusion/exclusion) is generated for that set of
patient profiles. This procedure is repeated 1,000 times to create a
vector of test statistics. The statistics are ranked, and the empirical
p-value is obtained as:

r+1
n+1

p= (12)
where r is the number of test statistics ranked greater or equal to the
observed value, and n is the total number of permutations. The full
algorithm is shown in Algorithm 2.

Data: nPerm = Number of monte carlo permutations

AE = All unique classes in O that appear in E

Result: testDist = Sorted list of calculated test statistics, length =

nPerm + 1

pValue = Calculated empirical p-value

for n in nPerm do

ET; = |E|;

for p in E do
ET;, = random_sample(AE, length(E,));
testDist, = score(ET);

testDist = rank(testDist);

r = length(testStat > testDist);
r+l .
nPerm+1’
return pValue;
Algorithm 2: Algorithm for generating p-values for inclusion and

exclusion scores through permutation.

pValue =

The number of permutations can be changed by the user, and
we suggest at least 1,000 to ensure a (log-)normal distribution and
sufficiently precise p-values possible (minimum of 0.001 in this case).
Throughout the evaluations in this article, we use 1,000 permutations.
Since we are creating a set of p-values for non-independent phenotypes,
we suggest a Bonferroni threshold be applied to determine an adjusted
significance threshold:

a(fwe
n

0< 13)

where a fwe is the desired error rate (0.05), n is the total number of
phenotypes Klarigi generates p-values for per score. Thus 6 is the new
threshold for a significant inclusion/exclusion score.

Output, interpretation, and configuration

Klarigi reports its results in either the univariate or multivariate
mode, in the form of a table of class associations with each group of
interest, reported with the scores assigned to them. These can either
be received in a KIgXtable, a plain text table, or in Tab-Separated
Values format. Each class is associated with four scores describing the
relationship between the class and the group, which are given short
descriptions in Table 3.

The program is highly configurable, and we have previously dis-
cussed the parameters that are available to modify the operation and
results of the program both for candidate restriction (see Table 1) and
identification of multivariable modules (see Table 2). In addition, there
are additional parameters that control different modes of operation and
calculation of scores. For example, there is a choice between which
information content measure to use for the calculation of the speci ficity
score. Descriptions of parameters are available in the documentation for
the program. Klarigi can also be run in exclusive group loading (EGL)
mode, which only loads the group of interest, and does not consider any
others. In this case, the stepdown algorithm operates upon inclusion,
and neither exclusion nor r-score are calculated. This can be useful
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Table 3
Short description of Klarigi class scores and their interpretation.
Score Description
Inclusion Measures the extent to which this term composes the group

of interest. Greater values indicate a greater proportion of

entities in the group being annotated with this class or its

subclasses.

Measurement of how discriminative this term is for the

group of interest. Greater values indicate that this class is

more exclusively associated with the group.

A balanced measure of how compositional and discriminative

the class is for the group.

(¢ The information content of the class. The greater the value,
the more informative or specific the class is, according to the
chosen information content measure.

Exclusion

r-score

for investigating group constituency without taking into account the
exclusivity of terms, and in the manuscript we subsequently refer to this
as a compositional analysis, in contrast to the discriminatory analysis
that results from loading all groups.

Because of this configurability, and the dependence of results on
that configurability, we anticipate a general workflow of using the
application to consist of interactive modification of those parameters
according to intermediate results, and desired outcomes. For example,
if an empty set is returned upon analysis, the min-ic parameter could
be reduced in an attempt to identify explanatory terms with a lower
speci ficity than previously considered.

Results

We describe here the development and implementation of Kla-
rigi, and make the tool freely available at https://github.com/reality/
klarigi. This repository includes the source code, pre-compiled binaries,
documentation, and a tutorial in notebook format that walks through
the functionality of the software, explaining the significance of different
parameters and outputs.

To demonstrate and evaluate the use of Klarigi for exploration of
biomedical datasets, we developed two use-cases. Both describe clinical
entities annotated using the Human Phenotype Ontology (HPO) [39]:
in the first case text-derived phenotype profiles for a set of Medical
Information Mart for Intensive Care III (MIMIC-III) admissions [51],
and the second using a set of phenopackets [52], describing patients
with rare diseases reported in literature [53]. We use Klarigi to explore
both of these datasets, comparing and contrasting those results with the
medical literature and enrichment analysis.

To further evaluate the results Klarigi produced for these use-cases,
we also used an enrichment method to identify over-represented terms.
To do this, we used XGR [29] to identify over-represented phenotypes
using both one-tailed binomial and Fisher tests. P-values were adjusted
with Bonferroni correction, propagating patient annotations to each
term according to the True Path Rule. P-values were calculated with
two background distributions: once using traits annotated to each pa-
tient and their frequencies as background, and additionally using only
those annotated to the parent class of each entity tested; the maximum
of each p-value was selected to help correct for the interdependence
of testing. In the case of Klarigi, we also tested the normality of the
permutation distribution for inclusion and exclusion scores by visually
examining the distributions using histograms and QQ-plots. An R script
containing these visualisations is provided in experiment repository.

The code used to obtain our results, as well as to perform the quanti-
tative evaluations and create the tables for the paper, are available on-
line at https://github.com/reality/klarigi_paper. All experiments were
run on a regular computer running a Linux operating system with an
Intel i7 processor and 16 GB of memory.
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Use case: Pulmonary embolism

Pulmonary embolism (PE) is a condition in which a thrombus
(usually a blood clot) forms in, or migrates from a distal site, to the
pulmonary arteries and occludes the pulmonary circulation, blocking
the entry of blood into or through the lungs. This may be associated
with predisposing conditions such as cancer, cardiovascular disease or
lung disease, but is often sporadic, for example following a deep vein
thrombosis in the leg. This condition is associated with a considerable
mortality rate, and often presents acutely in the emergency room in
ways that render it difficult to diagnose when associated with other co-
morbidities, such as Chronic Obstructive Pulmonary Disease (COPD),
and typically shares symptoms with other more common conditions,
such as pneumonia and acute bronchitis [54]. The time-critical de-
pendence of treatment on diagnosis makes it important to identify
combinations of discriminating symptoms as rapidly as possible [55].

To demonstrate Klarigi’s functionality, and to gain insight into the
phenotypic presentations associated with pulmonary embolism and
pneumonia, we created and evaluated text-derived phenotype pro-
files describing critical care admissions with the two diagnoses. We
identified relevant admissions from MIMIC-III, and extracted pheno-
type profiles from their associated discharge letters. MIMIC-III is a
large, freely-accessible dataset concerning nearly 60,000 visits to the
emergency department at the Beth Israel Deaconess hospital [51].

We used the ICD-9 codes 486 and 41519 to identify 5,437 MIMIC-
III admissions with either pneumonia or pulmonary embolism as an
associated diagnosis (provided in the coded diagnosis list produced
by a coding expert): 4,853 with pneumonia and 912 with pulmonary
embolism. We further restricted these to admissions with pneumonia or
pulmonary embolism given as the primary diagnosis, and those which
did not have the other diagnosis in any position. This led to a final set of
991 admissions, made up of 699 primarily coded with pneumonia, and
292 with pulmonary embolism. We employed the 2021-08-02 release
of the Human Phenotype Ontology, available at http://purl.obolibrary.
org/obo/hp/releases/2021-08-02/hp.owl.

To create phenotype profiles for these admissions, we used the Ko-
menti semantic text-mining framework [56], which implements Stan-
ford CoreNLP [57]. For every considered admission, we collected the
text from the corresponding discharge note. We created a lemmatised
vocabulary of all labels and synonyms in the Human Phenotype Ontol-
ogy (HPO) [39], containing 50,265 labels for 16,019 unique classes. We
used these to identify ontology terms mentioned in the discharge notes.
We then removed all associations that were identified by Komenti
as negated or uncertain. We also removed classes equivalent to, or
subclasses of, pneumonia (HP:0002090), pulmonary embolism
(HP:0002204), and abnormal thrombosis (HP:0001977). To
facilitate a holdout validation, we then reserved a randomly sampled
20% of the annotated admissions. In the training set there are a total
of 799 records, 568 pneumonia and 232 pulmonary embolism, while in
the test set there were 190 records, 60 pulmonary embolism and 131
pneumonia.

In its univariate mode, Klarigi calculates all relevant metrics for
every class that contains an instance in the dataset, restricted by the
options given in Table 1. The results of this analysis are shown in
Supplementary Tables 1 and 2. The subsequent results form different
modular subsets of these univariate results, by using the stepdown
algorithm with reference to different objective functions, as well as
potentially restricting the initial set of univariate results by modifying
minimum scoring thresholds.

We then employed Klarigi to perform a compositional analysis of
both groups separately, using “exclusive group loading” (EGL) mode to
consider each group without reference to its relationship to any other
groups in the dataset. As such, only the inclusion and IC scores are
used, and the step-down algorithm uses inclusion rather than r-score
as its optimisation parameter. The results of this analysis are shown in
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Table 4

Compositional analysis performed for pneumonia and pulmonary embolism using
Klarigi. This is intended to identify a set of variables that characterise each group
separately. This is achieved by using Klarigi in Exclusive Group Loading (EGL) mode.
As such, the program produces a set of compositional classes for each disease, without
considering how or whether those classes can be used to distinguish between the two
groups. These results are a subset of the univariate results (visible in Supplementary
Tables 1 and 2) sufficient to meet the threshold for overall_inclusion. Resnik IC was
used. max-inclusion was set to 0.7 for pneumonia, to avoid returning only dyspnea
(HP:0002094) and abnormal breath sound (HP:0030829), which alone meet
a sufficient overall_inclusion. min-inclusion was set to 0.3 for pulmonary embolism to
reduce the size of the result set.

Pneumonia Inclusion 1C
Dyspnea (HP:0002094) 0.8 0.83
Abnormal systemic blood pressure (HP:0030972) 0.76 0.76
Abnormal breath sound (HP:0030829) 0.69 0.8
Cough (HP:0012735) 0.67 0.87
Increased blood pressure (HP:0032263) 0.64 0.83
Hypertension (HP:0000822) 0.64 0.89
Abnormality of temperature regulation (HP:0004370) 0.48 0.77
Fever (HP:0001945) 0.48 0.83
Overall 99.3 -
Pulmonary embolism Inclusion 1C
Pain (HP:0012531) 0.81 0.63
Abnormal pattern of respiration (HP:0002793) 0.77 0.7
Abnormal systemic blood pressure (HP:0030972) 0.76 0.76
Dyspnea (HP:0002094) 0.75 0.83
Increased blood pressure (HP:0032263) 0.66 0.83
Hypertension (HP:0000822) 0.66 0.89
Abnormality of fluid regulation (HP:0011032) 0.63 0.67
Edema (HP:0000969) 0.62 0.67
Arrhythmia (HP:0011675) 0.61 0.64
Overall 100.0 -

Table 4. For both conditions, large values of the overall inclusion score
show that the given explanatory sets describe almost all of the group.
Large values for inclusion on individual classes also indicate terms that
cover a large proportion of the relevant group.

To gain insight on the differences between the phenotypic com-
position of the two groups, we also employed Klarigi to perform a
discriminative analysis. In this case, it uses the opposing group as
context, providing the additional exclusion and r-score measures, us-
ing the latter as the optimisation parameter for application of the
stepdown algorithm. These results are shown in Table 5. We tested
different hyper-parameter options based on the reclassification AUC
on the training set, but finally used the default values, obtaining final
values of 0.903 and 0.996 for pulmonary embolism and pneumonia
respectively. Permutation testing was performed after hyper-parameter
optimisation, and so was only run once. Meanwhile, the results of the
enrichment analysis using both the Fisher and binomial tests are shown
in Supplementary Table 3.

Scores for inclusion measure the proportion of entities in the group —
in this case PE or pneumonia — that are annotated by the class. Scores
for exclusion indicate the extent to which an individual annotated to
that class is likely to belong to one group rather than another, e.g. more
likely to have pneumonia or PE, or vice versa. This is therefore a set
of discriminating features that can be used to allocate a patient to one
group or the other.

To evaluate how characteristic and discriminatory the explanatory
sets were of their respective diseases, we used the 20% holdout set
to define a classification task. The results of this analysis are listed
in Table 6. In this analysis, we used the sets of characteristic terms
identified by Klarigi in univariate mode, Klarigi in multivariate mode,
and enrichment. Since the binomial enrichment results were a subset
of the Fisher results, we combine these into one ‘enrichment’ set
of explanatory terms. We then constructed classifiers for pulmonary
embolism and pneumonia in the test set with scores for each entity
identified using Klarigi. To provide additional measures of evaluation,
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Table 5
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Results for the discriminatory analysis performed using Klarigi. Here, we are attempting to identify an exclusively compositional
set of explanatory classes for each group, containing classes that can be used to discriminate between the two groups,
introducing the exclusion and r-score measures to achieve this. These results are contrasted with the purely compositional
analysis seen in Table 4, since it forms an alternative subset of the univariate results shown in Supplemental Tables 1 and 2.

Pneumonia r-score Inclusion Exclusion 1C
Cough (HP:0012735) 0.25 0.67 0.16 (p=0.051) 0.87
Congestive heart failure (HP:0001635) 0.22 0.3 0.17 (p=0.105) 0.95
Respiratory distress (HP:0002098) 0.21 0.34 0.15 (p=0.151) 0.92
Respiratory insufficiency (HP:0002093) 0.2 0.25 0.16 (p=0.042) 0.81
Airway obstruction (HP:0006536) 0.2 0.31 0.14 (p=0.068) 0.87
Productive cough (HP:0031245) 0.19 0.16 0.25 (p=0.013) 1.0
Chronic pulmonary obstruction (HP:0006510) 0.19 0.31 0.14 (p=0.157) 1.0
Renal insufficiency (HP:0000083) 0.19 0.37 0.13 (p=0.052) 0.84
Respiratory failure (HP:0002878) 0.19 0.22 0.16 (p=0.117) 1.0
Chills (HP:0025143) 0.19 0.27 0.14 (p=0.173) 1.0
Wheezing (HP:0030828) 0.19 0.38 0.12 (p=0.191) 1.0
Pulmonary edema (HP:0100598) 0.18 0.22 0.16 (p=0.141) 1.0
Aspiration (HP:0002835) 0.18 0.19 0.17 (p=0.102) 1.0
Fever (HP:0001945) 0.18 0.48 0.11 (p=0.267) 0.83
Atrial fibrillation (HP:0005110) 0.17 0.27 0.13 (p=0.216) 0.95
Abnormality of temperature regulation (HP:0004370) 0.17 0.48 0.1 (p=0.289) 0.77
Confusion (HP:0001289) 0.16 0.17 0.16 (p=0.114) 1.0
Rhonchi (HP:0030831) 0.16 0.2 0.14 (p=0.171) 1.0
Atrial arrhythmia (HP:0001692) 0.16 0.28 0.11 (p=0.166) 0.83
Chronic kidney disease (HP:0012622) 0.16 0.15 0.17 (p=0.027) 0.87
Stage 5 chronic kidney disease (HP:0003774) 0.15 0.11 0.22 (p=0.047) 1.0
Reduced consciousness/confusion (HP:0004372) 0.15 0.24 0.11 (p=0.254) 0.8
Overall - 99.3 - -
Pulmonary embolism r-score Inclusion Exclusion IC
Sinus tachycardia (HP:0011703) 0.17 0.25 0.13 (p=0.057) 1.0
Increased body weight (HP:0004324) 0.17 0.16 0.18 (p=0.023) 0.84
Obesity (HP:0001513) 0.16 0.14 0.17 (p=0.028) 0.87
Lower limb pain (HP:0012514) 0.15 0.1 0.28 (p=0.005) 0.89
Abnormal electrophysiology of sinoatrial node origin (HP:0011702) 0.15 0.26 0.11 (p=0.097) 0.89
Limb pain (HP:0009763) 0.15 0.1 0.27 (p=0.005) 0.84
Pleuritic chest pain (HP:0033771) 0.15 0.12 0.19 (p=0.025) 1.0
Abnormality of body weight (HP:0004323) 0.14 0.21 0.11 (p=0.098) 0.73
Palpitations (HP:0001962) 0.14 0.1 0.22 (p=0.015) 1.0
Vascular dilatation (HP:0002617) 0.13 0.1 0.19 (p=0.035) 0.74
Syncope (HP:0001279) 0.12 0.07 0.28 (p=0.005) 0.89
Tachycardia (HP:0001649) 0.11 0.29 0.06 (p=0.166) 0.74
Arthritis (HP:0001369) 0.11 0.22 0.07 (p=0.155) 0.74
Hypercoagulability (HP:0100724) 0.1 0.06 0.71 (p=0.001) 1.0
Abnormal exteroceptive sensation (HP:0033747) 0.1 0.06 0.29 (p=0.001) 0.8
Somatic sensory dysfunction (HP:0003474) 0.1 0.06 0.29 (p=0.001) 0.75
Overall - 80.6 - -
Table 6

Test set classification results for pneumonia and pulmonary embolism, using Klarigi’s classifier (see Eq. (11)), and semantic similarity
using the Resnik IC and Resnik pairwise method, with results given for both best match average (SS-BMA) and average groupwise
(SS-AVG) strategies. OI is the overall inclusion score, defined in Eq. (10), of the solution with respect to the test corpus. The greatest
score for each category is emboldened. .95 confidence intervals are given for AUC values in parentheses.

Group Method AUC (Klarigi) AUC (SS-BMA) AUC (SS-AVG) oI

Pneumonia Enrichment 0.989 (0.976-1) 0.748 (0.677-0.82) 0.714 (0.636-0.792) 0.977
Klarigi (u) 0.996 (0.989-1) 0.769 (0.699-0.834) 0.73 (0.654-0.807) 0.992
Klarigi (mv) 0.992 (0.982-1) 0.771 (0.699-0.844) 0.752 (0.677-0.828) 0.985

Pulmonary embolism Enrichment 0.575 (0.529-0.621) 0.543 (0.452-0.634) 0.561 (0.472-0.65) 0.15
Klarigi (u) 0.858 (0.801-0.916) 0.631 (0.543-0.719) 0.675 (0.59-0.76) 0.716
Klarigi (mv) 0.825 (0.764-0.886) 0.594 (0.505-0.684) 0.661 (0.576-0.747) 0.65

as well as to evaluate the utility of the exclusion score in measuring
term discrimination, we also compared the Klarigi classification method
with semantic similarity approaches. To do this, we also built classifiers
scored using the groupwise similarity between each phenotype profile
in the test set, and the explanatory set for each method. We performed
this task for both the best match average and average groupwise
strategies, with both cases using the Resnik pairwise method and Resnik
information content measure (using the annotations in the training set
for the probability distribution). For all classifiers, we calculated an
AUC using the scores for each admission in the test set, and their actual
diagnosis group for the label.

Use case: Rare disease annotation with phenopackets

Phenopackets are a standardised format for the representation of
phenotypic descriptions of patients that use biomedical ontologies to
annotate phenotypes. Phenopackets are increasingly being used as a
standard format for exchanging, aggregating and analysing human
disease information [52]. We developed Klarigi to natively support
the phenopackets format, converting it internally into the required
data model, which we believe is a forward-looking facility for the
anticipated future use of phenopackets, for example as an export format
for EHRs.
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Table 7
The publications that report the 19 patients with IHPRF3 that are phenotyped in the
phenopackets dataset.

Patients
10

Short name Full title

Bhoj 2016 [59]

Mutations in TBCK, Encoding
TBC1-Domain-Containing Kinase, Lead to
a Recognisable Syndrome of Intellectual
Disability and Hypotonia

Recessive Inactivating Mutations in 5
TBCK, Encoding a Rab

GTPase-Activating Protein, Cause Severe
Infantile Syndromic Encephalopathy

Chong 2016 [60]

Guerreiro 2016 [61] Mutation of TBCK causes a rare 3
recessive developmental disorder
Zapata-Aldana 2019 [62] Further delineation of TBCK - Infantile 2

hypotonia with psychomotor retardation
and characteristic facies type 3

Total - 19

To further evaluate Klarigi in the context of this data represen-
tation method, we examined a dataset of 384 rare disease patients
whose phenotypes were originally reported in the literature, and have
subsequently had their phenotypes transcribed into the phenopacket
format [53]. The dataset describes a range of rare diseases, and in our
use case, we examine the disease with the most patient descriptions,
Hypotonia, infantile, with psychomotor retardation
and characteristic facies 3 (OMIM:616900) (IHPRF3), with
19 patients. [HPRF3 is an ultra-rare genetic disorder broadly char-
acterised by global developmental delay and regression, brain atro-
phy, extreme hypotonia and a wide range of characteristic facial dys-
morphologies [58]. It is caused by recessive mutations in the TBCK
gene [59] In the dataset we use, the patient descriptions are derived
from four separate publications, listed in Table 7 were taken from these
citations. The 2018-03-08 release of HPO was used to annotate these
patients, and this was the version we used for the analysis.

Supplementary Table 5 shows the full set of 61 associated classes
that constitute the univariate results. Meanwhile, Table 8 shows the
multivariable results, whose overall inclusion describes complete cov-
erage of the dataset with at least one of these classes, expressed in a
much smaller explanatory set of 33 classes. Enrichment analysis was
also performed using the Fisher and binomial tests, and the significant
results of this analysis are shown in Supplementary Table 6.

To provide a quantitative evaluation for this analysis involving a
small set of patients, we compared them with the disease annotations
defined by the HPO database. HPO database annotations were devel-
oped through a combination of expert curation and text mining from
literature, clinical descriptions, and experimental evidence [63]. There
are 46 such annotations, listed in Supplementary Table 4. To measure
how characteristic the result sets are, we calculated semantic similarity
between each one and the set of HPO database annotations. We used
the Resnik method of pairwise similarity, with the Zhou method of
information content, with the best match average groupwise strategy.
The results of the Fisher and Binomial tests are here treated separately,
since neither forms a subset of the other.

Table 9 lists the semantic similarity value for each comparison.

We can also use Klarigi to evaluate alternative ways of grouping
the data, or subsets of the data. In this use case, we explored 19
IHPRF3 patient data across different publications, shown in Table 7.
In Supplementary Table 7 we show multivariable Klarigi results for
IHPRF3 patients grouped by the publication in which they are reported.

Discussion

We have described the design and implementation of Klarigi, and
its application to two use-cases, one to the comparison of two pheno-
typically similar diseases from text-derived phenotypes, and another to
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rare disease patients from expert annotations created from literature.
In this section, we will interpret and discuss the results, and provide
more discussion of Klarigi in context, including limitations and future
work.

The work described here is related to our previous work, which de-
scribes a semantic characterisation algorithm in the context of a cluster
explanation method [38], realised by means of inclusion and exclusion
scoring and a stepdown algorithm. This work builds upon it in sev-
eral ways, redefining the exclusion score and introducing the r—score,
improvement to the stepdown algorithm, a full formal description of
the algorithm’s design and implementation, introduction of permuta-
tion testing and the facility for producing models for discriminatory
classification, configurability including modification of parameters and
a new univariate mode of operation, and presentation of two practical
use cases that compare it with enrichment methods. Moreover, the
approach is consolidated into a software implementation that can be
used on any compatible semantic dataset.

Interpretation of results

Pulmonary embolism

The large values of overall_inclusion calculated for the compositional
results in Table 4 indicate a high overall coverage of the groups by
the explanatory modules. There are many shared explanatory classes
between the two diseases here, expressing their known similarity in
presentation, as evidenced by previous compositional analysis of known
presenting phenotypes for both conditions [54]. Half of the explana-
tory terms listed for pneumonia are shared by pulmonary embolism,
often with very similar scores for inclusion, such as a difference of
0.05 for dyspnea (HP:0002094). Differences in terms for this
set may provide candidates for discriminatory terms, such as cough
(HP:0012735) and arryhthmia (HP:0011675). Indeed, the en-
richment results include cough (HP:0012735) as a significantly
over-represented class, being the only significant result produced by
the binomial method.

The discriminatory analysis aims to produce explanatory sets that
can be used to distinguish between the other groups in the dataset,
shown in Table 5. We can see that none of the four redundant terms
in the compositional results appear in either set of results, though non-
redundant and highly compositional classes such as cough
(HP:0012735) are preserved.

We see in the discriminatory analysis inclusion of classes describing
known predisposing conditions for each disease. For example, pneu-
monia is a common complication of chronic renal disease [64] and
PE is often a sequel to deep vein thrombosis [65] which is associated
with lower limb pain, and obesity is similarly a known associated
factor [66]. Tachycardia, hypercoagulability, and syncope are all es-
tablished characteristics of PE, and it is notable that for pneumonia the
most discriminating features are associated with respiratory difficulty;
cough, wheezing, fever, and atrial arrhythmias. While fever may be
found in some cases of PE it is clear that in our cohort this was
not sufficiently common to contribute to the compositional analysis
or to prevent it appearing as a discriminating class for pneumonia.
The phenotype profiles derived from discharge letters do not contain
information on D dimer levels [67], hence this frequently used measure
did not appear in the results.

The discriminatory power of the sets is further explicated by the
classification analysis, the results of which are given in Table 6. Re-
duction in performance for prediction of pneumonia with the Klarigi
classifier was minimal, indicating that the set of explanatory terms
generalised well to the phenotypic distribution of those patients in the
test set. This reduction was greater for pulmonary embolism, which
tracks the lower overall quality of this explanatory set evident on the
training set, however the classifier still achieved a high performance.

For all classification methods and for both groups, models derived
from the sets of explanatory terms generated by Klarigi outperformed
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Table 8

Multivariable results for IHPRF3 in Klarigi. Reclassification AUC was 1.

OMIM:616900 (19 members) r-score Inclusion Exclusion IC
Severe muscular hypotonia (HP:0006829) 0.8 0.68 (p=0.001) 0.95 (p=0.009) 1.0
Developmental regression (HP:0002376) 0.63 0.58 (p=0.001) 0.68 (p=0.007) 1.0
Severe global developmental delay (HP:0011344) 0.5 0.42 (p=0.001) 0.62 (p=0.012) 1.0
Abnormality of upper lip vermillion (HP:0011339) 0.46 0.47 (p=0.001) 0.45 (p=0.007) 0.83
Respiratory insufficiency (HP:0002093) 0.42 0.42 (p=0.001) 0.42 (p=0.042) 0.81
Reduced tendon reflexes (HP:0001315) 0.42 0.53 (p=0.001) 0.35 (p=0.018) 0.82
Small basal ganglia (HP:0012697) 0.41 0.26 (p=0.001) 0.95 (p=0.007) 1.0
Exaggerated cupid’s bow (HP:0002263) 0.41 0.26 (p=0.001) 0.95 (p=0.009) 1.0
Macroglossia (HP:0000158) 0.39 0.26 (p=0.001) 0.78 (p=0.01) 0.95
Areflexia (HP:0001284) 0.39 0.32 (p=0.001) 0.5 (p=0.012) 0.89
Profound global developmental delay (HP:0012736) 0.36 0.26 (p=0.001) 0.58 (p=0.012) 1.0
Prominent nasal bridge (HP:0000426) 0.36 0.26 (p=0.001) 0.58 (p=0.014) 1.0
Skeletal muscle hypertrophy (HP:0003712) 0.35 0.26 (p=0.001) 0.51 (p=0.013) 0.78
Sloping forehead (HP:0000340) 0.34 0.21 (p=0.001) 0.95 (p=0.006) 1.0
Aplasia/Hypoplasia of the cerebellar vermis (HP:0006817) 0.33 0.26 (p=0.001) 0.45 (p=0.044) 0.87
Highly arched eyebrow (HP:0002553) 0.33 0.26 (p=0.001) 0.45 (p=0.039) 1.0
Cerebellar vermis hypoplasia (HP:0001320) 0.33 0.26 (p=0.001) 0.45 (p=0.044) 0.95
Tented upper lip vermilion (HP:0010804) 0.31 0.21 (p=0.001) 0.62 (p=0.015) 1.0
Coarse facial features (HP:0000280) 0.29 0.26 (p=0.001) 0.34 (p=0.036) 1.0
Small forehead (HP:0000350) 0.29 0.26 (p=0.001) 0.34 (p=0.041) 1.0
Narrow forehead (HP:0000341) 0.29 0.26 (p=0.001) 0.34 (p=0.041) 1.0
Aplasia/Hypoplasia of the corpus callosum (HP:0007370) 0.29 0.37 (p=0.001) 0.24 (p=0.094) 0.95
Aplasia/Hypoplasia of the cerebral white matter (HP:0012429) 0.29 0.37 (p=0.001) 0.24 (p=0.094) 0.95
Hypoplasia of the corpus callosum (HP:0002079) 0.29 0.32 (p=0.001) 0.27 (p=0.094) 1.0
Cerebral white matter hypoplasia (HP:0012430) 0.29 0.32 (p=0.001) 0.27 (p=0.094) 1.0
Brachycephaly (HP:0000248) 0.29 0.21 (p=0.001) 0.45 (p=0.036) 0.95
Absent speech (HP:0001344) 0.28 0.37 (p=0.001) 0.23 (p=0.085) 1.0
Abnormality of the cerebellar vermis (HP:0002334) 0.27 0.26 (p=0.001) 0.28 (p=0.042) 0.8
Diffuse cerebellar atrophy (HP:0100275) 0.27 0.16 (p=0.001) 0.95 (p=0.006) 1.0
Global brain atrophy (HP:0002283) 0.27 0.16 (p=0.001) 0.95 (p=0.006) 1.0
Global developmental delay (HP:0001263) 0.26 0.95 (p=0.001) 0.15 (p=0.055) 0.89
Open mouth (HP:0000194) 0.26 0.16 (p=0.001) 0.7 (p=0.011) 1.0
Diffuse cerebral atrophy (HP:0002506) 0.26 0.16 (p=0.008) 0.7 (p=0.002) 1.0
Visual impairment (HP:0000505) 0.25 0.21 (p=0.001) 0.31 (p=0.052) 0.87

Overall

- 100.0 - -

Table 9

Resnik+BMA+Zhou semantic similarity between the explana-
tory set for each method and the definitive set of IHPRF3 HPO
annotations defined by the HPO annotations database.

Method Similarity
Fisher 0.560
Binomial 0.607
Klarigi (u) 0.703
Klarigi (mv) 0.72

those from enrichment by AUC. This is very striking in the case of
pulmonary embolism, where performance of the enrichment on the
test set approached random by all classification methods, with poor
generalisation also evidenced by the very low overall inclusion value on
the holdout set. While differences in scores fell within .95 confidence
intervals for all values within the same classification methods in the
pneumonia setting, they were very distinct in the case of pulmonary
embolism, indicating a significant result.

Another insight from the classification analysis on the test set is that
the Klarigi classifier consistently performed substantially better than
both semantic similarity approaches. AUC scores for the Klarigi clas-
sification method fell outside of confidence intervals in all cases except
the universally poorly performing set of models formulated from the
PE enrichment results. This indicates that the Klarigi method formed a
significantly better performing set of classifiers in these settings. This
helps to provide evidence that the exclusion score, which makes up the
Klarigi classification model, is a good measure of class discrimination,
that generalises to use for quantifying discriminatory sets.

Rare disease annotation with phenopackets
The phenopackets dataset is much smaller than the MIMIC dataset,
describing far fewer patients. The annotations of patients were also
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derived by an expert from literature reports, instead of being mined
from text. The task also differs, in that we are evaluating IHPRF3
patients against a large background distribution of patients with other
rare genetic diseases, instead of comparing their phenotype profiles
head-to-head with those of a single chosen, and phenotypically similar
disease. This difference is evidenced by the increased clarity of the
results, with large individual values for inclusion and exclusion, overall
inclusion, and reclassification AUC. Klarigi was also able to identify
a much smaller subset of the univariate sets during the multivariate
stage, and this provides an example of the identification of sparse
representations of entity groups, in the case that the representation of
terms across the group is sufficiently homogenous.

The small number of disease cases also informed the decision not to
perform a train-test validation for this use case. Instead, explanatory
sets were compared with semantic similarity to the HPO database
annotations for the disease. In this evaluation, Klarigi’s result sets were
shown to be more similar to the definitional annotations than were both
enrichment approaches.

We can also use this dataset to identify relationships that are
not represented in the structured description of the disease. Several
classes identified by the multivariate results, described in Table 8, are
not found in the HPO database annotations. For instance, brachy-
cephaly (HP:0000248) is not included, though it affects 21% of
described patients with IHPRF3. As such, the findings produced by
Klarigi could constitute new disease associations for the disease, not
currently expressed in existing scientific databases describing it. In
addition, of the HPO database annotations that are shared by Klarigi’s
representation, we provide additional information about patient repre-
sentation, information content, and how exclusive these phenotypes are
for patients across a wide set of rare diseases, all information that can
be used to enrich secondary use of these phenotype associations.
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Supplementary Table 8 shows the multivariable Klarigi results for
IHPRF3 when stratified by the publication they appear in. This analysis
allows us to identify features that may be more specific to particular
publications and the patient groups they report. For example, intel-
lectual disability (HP:0001249) is over-represented in the
ten patients described by Bhoj et al., and both listed phenotypes for the
three siblings in Guerreiro et al. are highly exclusive and inclusive. The
terms appearing in these sets are highly discriminatory, and reflect the
genetic and phenotypic heterogeneity of the patient groups described.
Interestingly, we can see from the metadata associated with the HPO
database annotations, that some associations were directly evidenced
by the OMIM clinical description, which in turn makes use of publica-
tions not represented in the phenopackets dataset, in particular Alazami
et al..

Comparison to enrichment analysis

The results of Klarigi cannot easily be directly compared to en-
richment analysis. Fundamentally, they solve different problems, since
enrichment analysis methods only attempt to identify significantly asso-
ciated classes, and usually only for univariate relationships. Meanwhile,
Klarigi produces its results through class scoring and discrimination
rather than a significance cut-off. Therefore, while our quantitative
evaluations show that Klarigi out-performs enrichment in all cases, this
primarily indicates the different problem that Klarigi solves: semantic
explanation, or identification of characteristic and discriminatory sets
of terms for an annotated entity group.

Our results can also be used to illustrate where enrichment does and
does not perform well for semantic explanation. In the case of pneu-
monia, there are many individual classes with a strong and significant
univariate association with the group, and this leads to a sizeable set of
associated classes, which do function together as a discriminatory mod-
ule, evident by the high performance on the test set, listed in Table 6. In
the case of pulmonary embolism, however, the phenotypic distribution
is more complex, and only a single term is identified. By contrast,
Klarigi identifies a set of terms that, in combination, characterise the
group. Here the individual significance of terms becomes less relevant,
since they can nevertheless appear in a discriminative module, whose
generalisability be checked through means other than a statistical test,
such as through classification or measurement of overall_inclusion.

Since Klarigi does not identify classes using significance testing,
users are able to reactively modify hyper-parameters to identify better
explanatory modules for the group, retaining the facility for final con-
firmatory significance testing without risking multiple testing hazards.
For example, if initial results are too general, or if the result set
is dominated by a single class, the max-inclusion parameter can be
modified. Furthermore, while Klarigi provides significance testing for
individual classes, even where exclusion scores for particular classes
may not be significant, it is highly likely that the combination of
explanatory classes will be. The ‘fit’ of a result set to the dataset is
provided by multiple measures: individual p-values, individual scores,
overall scoring, and discriminatory AUC.

Klarigi’s univariate mode is more comparable to enrichment, in that
it identifies a set of pairwise relationships between terms and the group
of interest. However, Klarigi provides more information about those
relationships, and can therefore be used to more clearly explicate and
interpret the dataset. For example, enrichment identified congestive
heart failure (HP:0002098) as a highly over-represented class
for pneumonia, with large values for odds ratio and z-score. This asso-
ciation is not incorrect, and in fact it is a strong discriminator, which
also appears in the Klarigi solution. However, while its discriminatory
power is high, it is not a very highly compositional term, with only
0.3 for inclusion. In the case of another highly associated class for
pneumonia, cough (HP:0012735) appears to strongly characterise
pneumonia, however this phenotype also appears with high prevalence
in the pulmonary embolism group too, evidenced by the Klarigi-derived
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inclusion score of 0.25, compared with 0.67 for pneumonia. In cases
like this, large values for zscore and odds ratio may be confusing
or difficult to interpret, and may not provide enough information to
those attempting to gain a holistic understanding of each group and
their relationship with each other. Meanwhile, Klarigi captures this
combination of facts in the scores it presents for congestive heart
failure (HP:0002098) and cough (HP:0012735).

Another distinguishing feature is Klarigi’s use of an ontology rea-
soner. Most enrichment methods do not make use of a reasoner, work-
ing instead on purely asserted axioms, or in some cases though pre-
inferred knowledge graphs produced by preprocessing tools such as
OntoFunc. Use of an ontology reasoner provides access to inferential
reasoning and relationships between classes when identifying explana-
tory terms. For example, an additional inferred subclass relationship
would affect inclusion, exclusion, and specificity scores as instances
are determined across the ontology structure. Furthermore, use of an
ontology reasoner confirms internal consistency of the ontology being
used to perform the investigation.

Context, limitations, and future work

The design of Klarigi is a development upon principles first explored
in our previous work, in which we developed an algorithm for deriving
multivariable explanations for semantic clusters identified from Human
Phenotype Ontology (HPO) phenotype profiles [38]. In this work, the
approach is heavily modified and improved upon, including changes to
the algorithm and scoring system, and is generalised to be applicable to
any dataset and ontology. In particular, in the Design and Implementa-
tion section, we discussed limitations to the previous definition of the
exclusion score, and created a new definition that is less sensitive to
class imbalance.

While one feature of Klarigi is the ability to interactively modify
hyperparameters to identify desirable result sets, these parameters also
introduce complexity to the process, and understanding the interplay
of the parameters and their effect on the results may require manual
work, since it will differ depending on the dataset. Moreover, it may not
be easily possible for a human operator to find the optimal parameter
configuration.

The current defaults for algorithm parameters were determined
based on our observations using the algorithm. While these are con-
figurable, and worked well in our settings, they may not do so for
all datasets, and their configuration can be time consuming. Grid
search could also be employed to automatically identify good settings
for parameters, using either the overall_inclusion measure or
discriminatory AUC. Such a search through possible overall param-
eters could also add significantly to the execution time. However,
overcoming this problem would also help to avoid the problem of
providing parameter defaults that perform well across different ontolo-
gies, datasets, and algorithmic parameters, and reduce the amount of
human input required to obtain quality results. Parameter optimisation
could also potentially introduce problems with multiple testing. We
controlled for this, however, by choosing not to employ permutation
testing until the final set of desired results is received — Klarigi
currently requires an additional parameter to be passed for significance
testing to be performed. Simulation studies could also be undertaken to
identify good default values for different indications, e.g. for different
ontologies.

It is also possible that different scores could be introduced, or
different definitions of existing scores could be explored. For example,
the option to re-weight the r-score, in a similar manner to differential
weight applications to precision and recall in an f-score. Likewise,
different priorities of measures could be explored, such as consid-
ering information content above r—score in the stepdown algorithm,
or replacing overall_inclusion with AUC. The program also currently
only supports two information content measures, but could easily be
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extended to support more, or to support the definition of customised
measures of ontology-based speci ficity.

The information Klarigi produces about unique characterisation of
rare diseases may also benefit development of disease-phenotype asso-
ciations, which are used in a wide range of analysis approaches, such
as rare disease variant prioritisation or diagnosis. This contribution
could consist simply in the identification of additional phenotypes
through analysis of either larger aggregated datasets similar to the
phenopackets dataset, or text-mined data from clinical encounters or
literature. Moreover, we showed in Supplementary Table 8 that we
were able to identify disease phenotypes that were more exclusively as-
sociated with single publications. Taking note of this information could
support development of high quality disease-phenotype relationships.
For example, particular phenotypes that are very exclusive to one or
few publications may be less preferred as candidates for associations, or
associations could be provided with a measure of literature agreement.
Such a dataset could be produced using a larger set of phenopackets
data, or through mining literature and clinical narrative for pheno-
type profiles. Klarigi parameters could be configured to identify the
necessary level of association desired to constitute a disease-phenotype
link.

The measures described in our experiment could also be combined
with enrichment analysis approaches. Enrichment analysis use a mea-
sure of enrichment score, which could comprise any of the r-score,
inclusion, or exclusion scores given herein, then using the usual method
of testing for significant effects. Indeed, the use of significance testing
upon the final set of multivariable results can be considered as a kind of
enrichment analysis. Other potential expansions of functionality could
consist in extending the tool to facilitate a wider range of informa-
tion content measures, involving multi-faceted semantic similarity, or
identification of sub-groups through clustering.

Admissions sampling for the MIMIC dataset did not consider
whether multiple admissions were attributed to the same patient, and
this could potentially be a small source of bias. However, we do
not believe it affects the conclusions of this study, since it would
not favour a particular algorithm. In the same way, though unlikely,
different publications described by the phenopackets dataset could
potentially describe the same individuals. Future work could involve
fully evaluating the use of Klarigi in a clinical classification setting,
either standalone or as a feature selection methodology. We did not
compare the approach with another multivariable enrichment method.
This is because existing implementations for multivariable enrichment
are either limited to GO, or require a complicated setup process. The
possibility for Klarigi to be easily applied to any ontology and ontology-
annotated dataset is a major benefit of the approach. We addressed
this by making these methodological differences clear in our problem
description, comparison of the results, and discussion. We anticipate
that Klarigi can be used to perform improved semantic descriptive anal-
ysis of biomedical entities. This is an area of research that is of recent
interest, especially with advancements in structured representation of
phenotype profiles through phenopackets, and the automated creation
of phenotypic profiles through text mining. For example, one study
performed a statistical analysis of text-mined phenotype profiles for
4,095 individuals with Down Syndrome [69], descriptively reporting on
phenotypes and their frequency of appearance. This analysis, however,
only used a measure of patient frequency to stratify phenotypes. The
use of Klarigi in this case would have introduced measures of repre-
sentation for considered phenotypes, for example overall coverage of
unique individuals, and the utility to easily switch groupings to explore
the different aspects of the data.

Conclusions
Klarigi provides a new way to solve the task of semantic explana-

tion, addressing limitations in traditional enrichment approaches. As
such, it provides an approach that can be used for improved exploration
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and interpretation of biomedical datasets linked to ontologies. We have
demonstrated that it can be used to gain insight into relationships
between biomedical entities with clinical relevance.
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