

https://ntrs.nasa.gov/search.jsp?R=20180003598 2019-08-31T16:02:16+00:00Z Exoplanet detection synergy between Gaia and the WFIRST Coronagraph

Neil Zimmerman¹, William Fanning², Michael McElwain^{1,3}

¹NASA Goddard, ²Embry-Riddle Aeronautical University, ³NASA Roman Technology Fellow

- Future astrometric detections of exoplanets from the ٠ Gaia mission will augment and improve the sample of targets accessible to the Coronagraph Instrument (CGI) on WFIRST.
- We assessed the joint detection sensitivity of Gaia and WFIRST by modeling random planet populations around nearby (d < 20 pc), bright (V < 6) stars, and applying nominal detection thresholds for each mission.
- Our analysis suggests that only a small number of • the new planet detections from Gaia will be favorable for spectroscopic characterization by WFIRST CGI: 1-3 planets, depending on the assumed planet population model.
- The target stars hosting gas giants detectable to ٠ both missions tend to be GK dwarfs with brightness between V = 3-5, and distances within 10 pc.
- While few in number, these new Gaia-detected ٠ exoplanets could be exceptionally valuable targets for WFIRST due to the ability to incorporate astrometric mass estimates into the spectral retrieval of atmospheric parameters.

HIP	NAME	d(pc)	V mag	Ѕрес Туре	Score
3765		7.45	5.74	K1V	0.033
96100	sig Draconis	5.75	4.67	G9.0V	0.033
15510	82 Eridani	6.04	4.26	G8.0V	0.031
16537	eps Eridani	3.21	3.71	K2.0V	0.030
7981		7.53	5.24	K1V	0.030
8102	tau Ceti	3.65	3.49	G8.5V	0.029
99240	delta Pavonis	6.11	3.53	G8.0IV	0.027
99825		8.91	5.72	K3V	0.026
61317	beta CVn	8.44	4.24	G0V	0.026

Left: 2-D histogram of predicted astrometric signatures and host star G-band magnitudes, for bright, nearby stars (d < 20 pc). The horizontal while line denotes a nominal 70 microarcsec signature detection threshold; the vertical white line denotes a nominal minimum magnitude (G = 3) for target acquisition. The colorbar scale indicates the expected number of planets in each brightness-signature bin, based on the average of 1000 trials. As a reference point, the minimum astrometric signature of a known radial velocity planet observable with WFIRST CGI, 47 UMa c, is indicated by the white dot.

Left: "Top 10" target stars, ranked by the number of expected planets detectable by both WFIRST and Gaia