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Abstract

The Hudson Shelf Valley (HSV) is the largest physiographic feature on the U.S. mid-Atlantic continental shelf. The 150-km
long valley is the submerged extension of the ancestral Hudson River Valley that connects to the Hudson Canyon. Unlike other
incised valleys on the mid-Atlantic shelf, it has not been infilled with sediment during the Holocene. Analyses of multibeam
bathymetry, acoustic backscatter intensity, and high-resolution seismic reflection profiles reveal morphologic and stratigraphic
evidence for a catastrophic meltwater flood event that formed the modern HSV. The valley and its distal deposits record a discrete
flood event that carved 15-m high banks, formed a 120-km? field of 3- to 6-m high bedforms, and deposited a subaqueous delta on
the outer shelf. The HSV is inferred to have been carved initially by precipitation and meltwater runoff during the advance of the
Laurentide Ice Sheet, and later by the drainage of early proglacial lakes through stable spillways. A flood resulting from the failure
of the terminal moraine dam at the Narrows between Staten Island and Long Island, New York, allowed glacial lakes in the Hudson
and Ontario basins to drain across the continental shelf. Water level changes in the Hudson River basin associated with the
catastrophic drainage of glacial lakes Iroquois, Vermont, and Albany around 11,450 14C year BP (~13,350 cal BP) may have
precipitated dam failure at the Narrows. This 3200 km® discharge of freshwater entered the North Atlantic proximal to the Gulf
Stream and may have affected thermohaline circulation at the onset of the Intra-Allered Cold Period. Based on bedform
characteristics and fluvial morphology in the HSV, the maximum freshwater flux during the flood event is estimated to be
~0.46 Sv for a duration of ~80 days.
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1. Introduction Atlantic during the last deglaciation (Donnelly et al.,
2005). Changes in Laurentide Ice Sheet (LIS) meltwater

The Hudson River is recognized as playing a sig- routing between the Mississippi River and eastern
nificant role in the delivery of freshwater to the North outlets (the Hudson and St. Lawrence Rivers) influ-
enced the vigor of Atlantic thermohaline circulation and

* Corresponding author. Tel.: +1 508 457 2350; fax: +1 508 457 2310. thereby impacted climate (Broecker et al., 1989; Clark
E-mail address: rthieler@usgs.gov (E.R. Thieler). et al., 2001). During deglaciation, the routing of runoff
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from the retreating LIS in eastern North America was
controlled by terminal moraines and the position of ice
lobes that caused fresh water to be routed into specific
drainage basins (Licciardi et al., 1999), where it was
often stored temporarily in proglacial lakes. The catas-
trophic draining of these glacial lakes into the North
Atlantic has been proposed as an important influence on
thermohaline circulation and climate change (Alley
etal., 1997; Barber et al., 1999; Clark et al., 2001; Teller
et al.,, 2002). Modeling studies (Rahmstorf, 1995;
Manabe and Stouffer, 1997; Fanning and Weaver,
1997; Ganopolski and Rahmstorf, 2001) further suggest
that the location and magnitude of freshwater delivery
are critical factors causing changes in North Atlantic
thermohaline circulation.

The New York—New Jersey portion of the Atlantic
continental shelf has a long history of study that has
influenced present understanding of sea-level change
and coastal evolution. Most studies have interpreted the
depositional and erosional features on this shelf sector in
the context of processes acting during and after the Late

= 73°20'W

Wisconsinan lowstand of sea level. Veatch and Smith
(1939) proposed that low scarps present on the shelf
were paleo-shorelines, and named them the Nicholls
(~—120 m), Franklin (=110 m), and Fortune (—50 m)
shores. Knebel and Spiker (1977) termed a portion of
the Fortune shoreline the Tiger scarp. Dillon and Oldale
(1978) assigned ages of 15,000 and 13,000 '*C year BP
to the Nicholls and Franklin shores, based primarily on
their relationship to regional sea level during post-
glacial sea-level rise (Emery and Garrison, 1967,
Milliman and Emery, 1968).

Sediment wedges on the continental shelf off south-
ern New York and New Jersey (the outer shelf wedge and
the mid-shelf wedge, Fig. 1) have been interpreted as
resulting from deposition during the last deglaciation
(Ewing et al., 1963; Milliman et al., 1990), and more
recently have been reinterpreted to represent deposition
from catastrophic failure of glacial lakes (Uchupi et al.,
2001; Donnelly et al., 2005).

In this paper, multibeam bathymetry and seismic data
are used to understand the evolutionary history of this

Fig. 1. Shaded relief map of the New York—New Jersey continental shelf showing the location of the Hudson Shelf Valley and other important
morphologic features, using topography and bathymetry data from the NOAA Coastal Relief Model. HR=Hudson River; HG=Hell Gate (East
River); RB=Raritan Bay; HHM=Harbor Hill Moraine; CB=Christiansen Basin; HSV=Hudson Shelf Valley; BC=Block Channel; MSW =Mid-
shelf Wedge; FTS=Fortune/Tiger Shore; FS=Franklin Shore; OSW =Outer Shelf Wedge; HC=Hudson Canyon.
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Fig. 2. Geographic divisions, water depths, and acoustic backscatter intensity from multibeam surveys in the Hudson Shelf Valley. (A) Contour map
of water depths (meters). (B) Pseudo-colored, shaded relief image of multibeam bathymetry and acoustic backscatter intensity (multibeam data in area
of Hudson Shelf Valley only). Low acoustic backscatter (blue tones) corresponds to fine-grained sediment (generally finer than medium sand), high
acoustic backscatter (yellow/orange/red tones) corresponds to coarse sediment and rough-textured surfaces including rocky outcrops. Geographic
divisions shown by yellow lines. Also shown are locations of seismic and depth profiles and enlarged area in Fig. 9 (box). Abbreviations and
background bathymetry data follow Fig. 1.
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Fig. 3. Map showing tracklines of geophysical surveys in the study area. Dense coverage in the Christiansen Basin and upper Hudson Shelf Valley
consists of east—west tracklines spaced 300 m apart.

complex fluvial/shelf system. Results yield insight into present form of the Hudson Shelf Valley. Results also
the Late Wisconsinan drainage history of glacial lakes in provide physical evidence for episodic freshwater de-
this region that bears on the processes that imparted the livery from the Hudson River to the Atlantic Ocean.
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Fig. 4. Map showing the course of the paleo-Hudson River fluvial channel from the Narrows to the upper portion of the Hudson Shelf Valley, as well
as paleo-channels for the Raritan River (after Gaswirth et al., 2002) and probable Richmond Valley spillway. Seismic profile along KK’ is shown in
Fig. 5. Dashed areas indicate inferred channel position. UB=Upper New York Bay; LB=Lower New York Bay; RB =Raritan Bay; RV =location of
Richmond Valley spillway; PA=location of Perth Amboy spillway; RR=Raritan River; CB=Christiansen Basin; UV =Upper Hudson Shelf Valley.
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2. Study area

The 150-km-long Hudson Shelf Valley (HSV) is the
largest physiographic feature on the mid-Atlantic
continental shelf (Fig. 1). The HSV is the submerged
seaward extension of the Hudson River drainage system
that connects the Hudson River to the Hudson Canyon.
Unlike other valleys on the mid-Atlantic shelf such as
the Delaware (Swift et al., 1980) and Susquehanna
(Twichell et al., 1977), however, much of the HSV has
not been filled with sediment. The valley begins in a
broad, shallow basin (Christiansen Basin) and extends
offshore 5-40 m below the surrounding shelf surface to
a seaward terminus at a shelf-edge delta near the head of
Hudson Canyon (Ewing et al., 1963; Emery and
Uchupi, 1972).

The ancestral Hudson River is generally thought to
have had a long history that began in the Late Cre-
taceous. Uplift and tilting of the margin, resulting in
landward erosion and seaward growth, continued into

the Tertiary (Thompson, 1936; Soren, 1971). The
Hudson River was repeatedly downcut into Cretaceous
coastal-plain strata during periods of Pleistocene marine
regression (Suter et al., 1949; Knebel et al., 1979).
Scouring of the lower Hudson River during the last
glaciation formed a fiord in the region north of New York
City (Newman et al., 1969).

More recent fluvial downcutting was amplified by
drainage of late Wisconsinan glacial lakes (Newman
et al., 1969), culminating in the failure of the terminal
moraine dam at the Narrows, which is a break in the
Harbor Hill moraine (Fig. 1) between Staten Island and
Long Island, New York. Borehole data across the
Narrows suggest that more than 100 m of Pleistocene
and Cretaceous sedimentary material was eroded as a
result of this breaching event (Fluhr, 1962; Newman
et al.,, 1969). Uchupi et al. (2001) proposed that de-
position of sediment lobes on the continental shelf
(Fig. 1) and erosion of the HSV were a consequence of
this catastrophic drainage.
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Fig. 5. Uninterpreted (upper) and interpreted (lower) seismic reflection profile (boomer) across the Hudson River adjacent to the Narrows in northern

Lower New York Bay. See Fig. 4 for location.
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Fig. 6. Uninterpreted (upper) and interpreted (lower) seismic reflection (CHIRP) profile across the upper Hudson Shelf Valley (HSV) showing
clinoforms within two of the channel-fill units (CFU5 and CFU®6) that can be mapped regionally in this area. Unit U4 is mappable in the upper and
middle HSV as a massive deposit capping the channel-fill units. Ul is a thin deposit of modern sewage sludge resulting from offshore disposal. Gas in
CFUS and Ul produces acoustic blanking. See Fig. 2 for location (after Schwab et al., 2003).

2.1. Methods

Surveys of the HSV were conducted using multi-
beam swath bathymetry (Butman et al., 2003) and high-
resolution seismic profiling systems (Schwab et al.,
2003) (Figs. 2 and 3). A Simrad Subsea EM 1000
Multibeam Echo Sounder (95 kHz) was used to acquire
bathymetry and backscatter intensity data. This system
utilizes 60 electronically aimed beams spaced at in-
tervals of 2.5° that insonify a strip of sea floor as much
as 7.5 times the water depth (swath width of 100—400 m
within the survey area). The horizontal resolution of the
beam on the sea floor is approximately 10% of the water
depth (3—50 m in the survey area). Vertical resolution is
approximately 1% of the water depth (0.3—5 m in the
survey area). The bathymetric soundings were corrected

for tidal elevation and are reported relative to mean sea
level.

Seismic reflection data were acquired using a Da-
tasonics 2—7 kHz swept FM (CHIRP) subbottom pro-
filer, and a 300- to 3000-Hz boomer subbottom profiler.
The CHIRP subbottom data were acquired at a 250-ms
fire interval, 250-ms sweep, and 0.244-ms sample
interval. The boomer data were acquired at a 0.5-s fire
interval, 200-ms recording interval, and a 0.062- or
0.125-ms sample interval. Ship position was determined
using differential GPS. The CHIRP towfish was navi-
gated relative to the ship using an acoustic-ranging
system. The seismic data were logged digitally and
processed with Promax seismic processing software. An
automatic gain control was applied to the CHIRP data
with a 10-ms window. The boomer data were processed
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Fig. 7. Uninterpreted (upper) and interpreted (lower) seismic reflection profile (CHIRP) along the axis of the upper Hudson Shelf Valley showing

CFUG6 and the overlying unit U4. See Fig. 2 for location.

by applying a zero-phase Butterworth band-pass filter
(325-2400 Hz) followed by a time-varying gain.

3. Results
3.1. Seismic—stratigraphic framework

The deepest seismic—stratigraphic unit resolved in
the seismic reflection data is interpreted to be composed
of Upper Cretaceous to Lower Tertiary, semi-lithified,
coastal-plain strata (Williams, 1976; Schwab et al.,
1997a,b; 2000, 2003). These strata are recognizable on
seismic profiles as a series of conformable bedding-plane
reflections with high-amplitude returns with a low angle
(~ 1°), monoclinal, southeastward dip. The coastal-plain
strata crop out on the sea floor at the head of the HSV and
to the west off New Jersey (Williams and Duane, 1974;
Williams, 1976; Schwab et al., 1997a,b). Where buried,
the coastal-plain strata are truncated by the coastal-plain
unconformity, a regional angular unconformity that has
been identified throughout the U.S. Atlantic margin
(Poag, 1978). This unconformity separates the late Cre-
taceous to Tertiary coastal-plain strata from overlying
Quaternary sediment (Schwab et al., 2003).

Interpretation of seismic reflection data from Lower
New York Bay (south of the Narrows) to the head of the

HSV in Christiansen Basin indicates that the Hudson
River channel, which is now buried, was 2—4 km wide
in this area (Fig. 4) and had thalweg depths reaching at
least 45 m below present sea-level, using a nominal
velocity of 1500 m/s (Fig. 5). The base of the fluvial
deposits here are bounded by the coastal-plain strata. In
the seismic reflection profiles, the surface of the coastal-
plain strata is characterized by abundant diffractions,
indicative of a very rough surface, with small-scale
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Fig. 8. Bathymetric profile across the upper Hudson Shelf Valley. The
valley is more than 3 km wide at this location, as much as 35 m deep
relative to the surrounding continental shelf, and is asymmetric with a
steeper northern flank. See Fig. 2 for location.
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relief of 1-2 m. There are also two prominent channels
cut into the seafloor of Raritan Bay (Fig. 4). The largest
is the meandering valley of the paleo-Raritan River
(Gaswirth et al.,, 2002). At least one other channel
appears to originate on Staten Island, at the base of the
Harbor Hill terminal moraine. The quality of the seismic
profiles in Lower New York Bay and Raritan Bay is
strongly affected by the presence of gas in the sedi-

ments, as well as human activities such as dredging and
dumping that have taken place over the past few
hundred years. Thus, details of the internal stratigraphy
of'the fluvial deposits are not well resolved because they
are obscured by gas, have been physically removed by
dredging, or have been covered by dumped material that
either traps gas or otherwise attenuates the seismic
signal.
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Fig. 9. Shaded relief image of multibeam bathymetry of a portion of the lower Hudson Shelf Valley. The image was created by exaggerating the
bathymetry 20x, and illuminating from 315° at an elevation of 45°. See Fig. 2 for location. The straight along-valley lines are artifacts in the
multibeam data. (A) Large bedforms dominate the surface of this part of the valley. Note the steep northeastern edge of the valley. The deepest
bedforms are along the southwestern-most side of the valley enclosed by the 80-m isobath. (B) Grayscale shaded relief image of this area.
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Fig. 10. Map showing locations of seismic profiles in the lower Hudson Shelf Valley, along with uninterpreted (upper) and interpreted (lower) seismic
reflection profiles (CHIRP). Additional seismic profiles are shown in Fig. 11. See text for discussion. TDC=artifact due to CHIRP towfish depth
change.
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Fig. 10 (continued ).

At the head of the HSV, seismic profiles show at least
three (possibly four) cut-and-fill sequences filling the
base of the valley (two are illustrated in Fig. 6). These
sequences suggest several episodes of channel cutting
followed by partial channel filling. The sequences can
be mapped as distinct channel-fill units (CFUs), in-
formally designated as CFUS, CFU6, and CFU7 with
increasing depth in section (Schwab et al., 2003). An
acoustically amorphous unit as much as 5 m thick (unit
U4; Schwab et al., 2003) unconformably overlies the
channel-fill units (Figs. 6 and 7). This unit is present
throughout the upper and middle HSV.

In the distal portion of the HSV, the seismic lines are
less dense (Fig. 3), and individual channel fill units
described above cannot be correlated across the region.

These data show that the fluvial channels generally
overlap each other and follow the course of the HSV to
within 40 km of the head of Hudson Canyon where they
bifurcate on the low-gradient outer shelf (Fig. 2).

3.2. Bathymetry

Based on topography derived from multibeam ba-
thymetric soundings (Butman et al., 2003), the HSV can
be divided into upper, middle, lower and outer sections
(see Fig. 2). The upper valley begins at about 30 m water
depth in the Christiansen Basin and terminates at about
65 m water depth at the beginning of a series of semi-
enclosed basins in the valley axis. This upper part of the
valley is 25 km long, trends almost north—south, and the
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Fig. 11. Uninterpreted (upper) and interpreted (lower) seismic reflection profiles (CHIRP) along the axis of the lower Hudson Shelf Valley showing
the different types of bedforms present on the seafloor and beneath the surface. Profile locations shown in Fig. 10. See text for discussion.

water depth deepens nearly linearly with an axial slope
of about 0.08°.

The middle valley begins at about 65 m water depth
and ends at nearly the same depth. At the beginning of
the middle valley the orientation of the axis changes
from southward to southeastward. The middle valley is
about 5 km wide and is 20—40 m deeper than the
adjacent shelf. The most prominent feature of the mid-
dle valley is its well-defined, linear northeastern edge
(Fig. 8) with up to 30 m of relief locally and which
extends for nearly 30 km along the valley (Fig. 2).

The lower valley starts in 65—70 m water depth and
ends in 75—-80 m water depth where it cuts through the

seaward edge (Fortune/Tiger shore) of the mid-shelf
wedge (Fig. 2). The lower valley is 10 km or more wide
and has a poorly defined axis that is 15—25 m deeper than
the adjacent shelf. A relatively steep slope (10-20°) with
up to 15 m of relief runs along the northeastern side of the
lower valley (Fig. 9). An elongate field of large bedforms
covers an area approximately 30 km long and 4 km wide
along the southwestern side of the valley (Fig. 9). A
series of semi-circular depressions 4—5 m deep and a few
hundred meters across are contained in a basin enclosed
by the 76-m isobath along the southwestern edge of the
bedform field; the deepest water depth (89 m) in the
lower valley occurs in these depressions.
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Fig. 12. Perspective view of shaded-relief multibeam bathymetry, colored by water depth, looking to the northwest from just south of the head of
Hudson Canyon. The area outside of the multibeam data shows shaded relief using the NOAA Coastal Relief Model. The faint along-valley striping is
an artifact in the multibeam data. MSW =Mid-Shelf Wedge; FTS=Fortune/Tiger Shore; HC=Hudson Canyon.

The outer valley extends eastward from the lower
valley and ends at the head of the Hudson Canyon. A
series of elongate topographic highs trending east—
northeast separate the outer valley from the head of
Hudson Canyon (Figs. 2 and 3). The ridges define a
roughly triangular area, ~ 20 km on a side, just landward
of the canyon head. The crests of these topographic
highs are 8—10 m above the adjacent seafloor.

3.3. Bedform field

A prominent feature of the lower HSV is an elongate
field of large bedforms about 30 km long and 4 km wide
(Fig. 9). The bedforms have a height of 3—6 m and
wavelength of 150-300 m, with crests oriented
orthogonal to the valley axis. Individual bedform crests
can be traced up to 3 km across the valley. The bedforms
may be either asymmetrical or symmetrical in cross-
section. In plan view, they have a 2-D to 3-D dune
morphology (Ashley, 1990). The bedforms appear to be
confined within low levees (Fig. 10) and do not extend
across the entire width of the valley.

High-resolution CHIRP subbottom data from the
bedform field (Figs. 10 and 11) indicate that the bed-
forms are part of a discrete sedimentary unit that uncon-

formably overlies the channel-fill units in the lower
valley (Fig. 10, A-A’, B-B’, C—C’). Bedforms also
extend farther across the valley than any individual
channel-fill unit. The bedforms unit averages 2—-3 m
thick, with maximum thicknesses less than 5 m. At the
seaward terminus of the bedform field, the unit thins
(Fig. 10, C—C’) and is not resolved in the seismic data.
Levees bounding the bedforms can be traced down the
valley, where the unit containing the bedforms thickens
again and levees bounding a shallow topographic chan-
nel are visible (Fig. 10, D-D’).

In seismic cross-sections, bedforms have two dis-
tinct morphologies and internal structures (Fig. 11).
The topographic low along the southern side of the
valley is a location where channel-fill occurs in the
shallow sub-surface. In this region, the bedforms are
often asymmetric with the steeper side facing up-valley
(Fig. 11, E-E’). The bedforms have a depositional
upper layer that is up to a meter thick, but they have a
core that is composed of the underlying channel-fill
unit (Fig. 11, E-E’). Thus, it appears that the bedforms
on the southwestern-most side of the valley were ini-
tially erosional in nature; troughs were likely formed by
scour into the underlying channel-fill. In places, ero-
sional downcutting appears to have removed nearly 5 m
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of sediment. Above the scour surface, the bedforms
become depositional.

Outside of the topographic low, the bedforms are nearly
symmetrical and have visible internal reflections (Fig. 11,
F—F’). The lowermost reflections generally follow what
appears to be a wavy erosional surface. Upper reflections
dip up-valley on the up-valley side of the bedform. These
internal structures suggest that the bedforms may be
antidunes (Allen, 1982; Alexander et al., 2001).

4. Discussion

Geophysical data presented in this paper provide new
insight into the processes that formed the present Hudson
Shelf Valley. The HSV is interpreted to have been carved
initially by precipitation and meltwater runoff during the
Wisconsin glaciation, along with drainage of early
glacial lakes. A later flood resulting from the failure of
the Harbor Hill terminal moraine dam at the Narrows
between Staten Island and Long Island allowed glacial
Lake Hudson (the lake initially impounded by the
Harbor Hill moraine) to drain across the continental shelf
through the existing valley. Available data on the timing
of the drainage of Lake Hudson and other lakes constrain
the timing of the flood event.

4.1. Glacial drainage and timing of the meltwater flood

The initial formation of the present HSV was likely
due to fluvial incision during the advance of the LIS to
its terminal position. Variations in precipitation, runoff
from the ice sheet, and diversion of rivers (e.g., the
Raritan River; Stanford, 1993) by the advancing ice
probably contributed to multiple channel cut-and-fill
complexes (CFUs 5-7) imaged beneath and adjacent to
the HSV along its length (Figs. 6 and 10). The fluvial
systems mapped in the HSV may also represent
retrenchment in the position of an older channel, but
because the mapped channels are eroded into Creta-
ceous sediments (Schwab et al., 2003), any earlier
stratigraphic record has been removed.

Once the ice sheet began retreating from its maximum
Wisconsinan position, early glacial lakes Bayonne and
Hackensack drained through spillways in the terminal
moraine at Perth Amboy and Richmond Valley (Stanford
and Harper, 1991). Channels at the bases of these
spillways exist in lower New York and Raritan Bays
(Fig. 4) and extend eastward to the head of the HSV. As
the ice continued its northward retreat, Hell Gate in the
East River was deglaciated, which initiated Hudson River
basin drainage into the Long Island Sound lowlands (Lake
Connecticut) and also provided a secondary outlet for

Lake Hackensack (Stanford and Harper, 1991). Subse-
quent drainage of lakes in the Hudson River basin (Lakes
Hudson, Albany and Vermont), as well as Lake Iroquois
drainage through the Mohawk Valley outlet between the
Lake Ontario basin and the Hudson River valley (Muller
and Prest, 1985; Pair and Rodrigues, 1993), were also
routed through Hell Gate. According to Ridge (1997), this
routing persisted until after 12,000 '*C year BP. This
drainage routing is probably responsible for the formation
of Block Channel on the continental shelf southeast of
Long Island (Fig. 1; Uchupi et al., 2001).

Reconstructed drainage routing history (Stanford and
Harper, 1991) suggests that no meltwater exited the
Hudson River southward across the New York—New
Jersey shelf until the breach at the Narrows took place.
Weiss (1974) reported that the onset of marine conditions
north of the Narrows occurred by 10,280+270 '*C year
BP (11,465-11,422,12,386-11,558, 12,620—12,474 cal
BP). More recently, Donnelly et al. (2005) found that
estuarine silt overlying glacial lake sediments in the
lower Hudson River has an age of 10,350+65 '*C year
BP (12,035-11,959, 12,354-12,083, 12,598-12,502 cal
BP). Thus, dam failure at the Narrows and associated
flood event must have occurred between ~ 12,000—
10,300 '“C year BP. Water level changes in the Hudson
basin associated with the drainage routing of glacial
lakes Iroquois, Vermont, and Albany between ~ 11,300
and 10,900 *C year BP (Licciardi et al., 1999; Clark
et al., 2001; Rayburn et al., 2005) may have precipitated
dam failure at the Narrows. The most likely time interval
for breaching of the moraine dam at the Narrows is
between 12,300 '*C year BP (Ridge, 1997; Licciardi
et al., 1999) and the initiation of the Champlain Sea at
about 11,100 '*C year BP (Rodrigues, 1988; Ridge et al.,
1999; Richard and Occhietti, 2005). Recently, Donnelly
et al. (2005) suggested an age of ~ 11,450 '*C year BP
(~13,350 cal BP) for the flood event.

Dam failure at the Narrows is inferred to have been
catastrophic for several reasons: (1) reconstructed water
planes of Lakes Hudson and Albany project to the
terminal moraine at least 21 m below its crest (Stanford
and Harper, 1991); (2) borehole data at the Narrows
suggest that more than 100 m of Pleistocene and Cre-
taceous sediments, along with most of the previously
deposited lacustrine sediment, was eroded as a result
of this breaching event (Fluhr, 1962; Newman et al.,
1969); and (3) as described above, the Hudson channel-
fill immediately downstream from the Narrows is char-
acterized by a rough basal surface and a massive, poorly
defined internal structure. These observations are con-
sistent with intense erosion followed by rapid emplace-
ment of sediment, supporting a swift rise in water level
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in Lake Hudson that overtopped the moraine and caused
catastrophic dam failure.

4.2. Shelf valley and bedform formation

The early, outburst-flood phase of the flood event
immediately following dam failure at the Narrows was
probably characterized by a high-volume, non-cohesive
sediment gravity flow (Middleton and Hampton, 1976)
down the HSV and across the outer continental shelf.
This event may be responsible for the formation of
sediment lobes on the mid-shelf (Uchupi et al., 2001;
Donnelly et al., 2005). The roughly triangular area of
topographic ridges near the head of the Hudson Canyon
(see Figs. 2 and 12) may be a subaqueous delta also
resulting from this early phase. Later phases of the flood
event presumably eroded this deposit into its present
ridged form.

Deposition of the sediment gravity flow was prob-
ably followed by a water-flood phase caused by con-
tinued lake drainage, during which we infer that the
large bedforms developed within the lower valley.
Levees within the lower and outer valley clearly suggest
several phases of flow. The later phases appear to have
migrated progressively southward, as suggested by the
series of levees. Down-valley from the bedform field,
and contained within the same levee system, deposits
form a veneer on the outer valley surface, which in turn
are cut by a shallow topographic channel with bounding
levees (Fig. 10, D—D’). The morphology of the lower
HSV (Fig. 12) is thus characterized by banks and levees,
rather than a braided and anastomosed morphology as
suggested by Uchupi et al. (2001).

If the surficial bedforms in the lower valley are
antidunes, this suggests supercritical flows (Froude
number >1) during one or more flood events; the
bedforms would have formed in the presence of a free
water surface that was characterized by wave breaking
(hydraulic jumps) (Allen, 1982; Alexander et al., 2001).
The asymmetric bedforms cored by channel-fill deposits
appear to be predominantly erosional in nature. They are
inferred to have formed by erosion of the bedform trough
into the underlying channel-fill deposits. The bedform
asymmetry may be attributed to increased resistance of
the channel-fill to erosion (Reineck and Singh, 1980).
The erosive nature, combined with the variability in
bedform height and wavelength within the topographic
low, is also suggestive of a “chutes and pools” mor-
phology (Figs. 9 and 11, E-E’) that is characteristic of
supercritical flows (Allen, 1982).

The form and internal stratigraphy of the bedforms is
consistent with that observed in laboratory studies of

supercritical flows (Middleton, 1965; Alexander et al.,
2001). Kennedy (1963) found that the minimum
wavelength (L) of antidunes is related to flow velocity as

L=2nU?/g (1)

where U is the flow velocity and g is the acceleration
due to gravity. The bedforms in the lower HSV have a
minimum wavelength of 150 m, which indicates flow
velocities of about 15 ms™ ',

Important questions in resolving the environmental
setting of the bedform field as well as the inferred outer
shelf delta are the water depth and whether these features
formed in a marine, estuarine, or fluvial environment.
Using an approximation by Allen (1968) with Froude
numbers (~ 1-2) in the range where antidunes exist yields
paleo-flow depths of ~5-20 meters. The bedforms are
located in present water depths of approximately 75—-85 m
within levees at depths of about 70 m. If the flood event
inferred to have created the bedforms occurred at
~11,450 "C year BP (~13,350 cal BP) (Donnelly et
al., 2005), regional and global sea-level data (Milliman
and Emery, 1968; Dillon and Oldale, 1978; Fairbanks,
1989) suggest that sea-level stood at about 75 m below
present at that time. The transition from fluvial-dominated
erosional morphology (bedforms, steep banks) in the
lower valley to subaqueous marine depositional mor-
phology (delta) in the outer valley also occurs at about
75 m. Our paleo-environmental interpretation is that the
flood event probably discharged into an estuarine and
shallow marine system that formed as sea-level rose and
inundated the lower HSV.

A significant aspect of the bedforms and associated
morphologies in the lower valley is their apparently
pristine preservation. The morphology of the bedforms,
for example, does not appear to have been altered by
later reworking. Similarly, the steep northeastern bank
of the lower valley has not been degraded. This ex-
cellent preservation is attributed in part to their initial
formation in a water depth of ~10—15 m, and in part to
rapid sequestration below the depth of active marine
(wave) reworking by the rapid global sea-level rise
characteristic of the late Pleistocene (Fairbanks, 1989;
Bard et al., 1996; Liu et al., 2004). This period of rapid
sea-level rise effectively drowned the bedforms before
they could be extensively reworked or destroyed.

The acoustically amorphous unit U4 (Figs. 6 and 7) is
widespread throughout the upper and middle HSV,
covering an area of about 250 km?. This ~ 5-m-thick
unit thins in the distal portion of the lower valley and
terminates just up-valley from the bedform field. The
massive internal character suggests rapid emplacement.
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It is possible that unit U4 represents a post-flood debris
flow, but there are presently no data to confirm this
speculation.

4.3. Freshwater flux and possible climatic response

Recent estimates of the volume of catastrophic
glacial lake drainage (Rayburn et al., 2005; Donnelly
et al., 2005) in the glacial lake Troquois, Vermont, and
Albany system can be used to assess the potential flux of
freshwater down the Hudson River during the flood
event. Rayburn et al. (2005) suggest a total discharge of
3200+480 km® during three nearly contemporaneous
events: (a) Lake Iroquois’ drop from the Main to the
Frontenac level (570+85 km® discharged through the
Mohawk outlet); (b) Lake Vermont’s drop from the
Coveville to the Upper Fort Ann level (130+20 km’
discharged through the Fort Ann outlet); and (c) the Lake
Iroquois/Vermont drop from the Upper Fort Ann to the
Lower Fort Ann level (2500+375 km® discharged
through the Fort Ann outlet). Using the volume estimates
given above and the cross-sectional area of the HSV in the
bedform field, the freshwater flux during the flood event is
estimated to be ~0.46 Sv for a duration of ~ 80 days. This
flux exceeds the threshold suggested by modeling studies
(Ganopolski and Rahmstorf, 2001) to have an effect on
thermohaline circulation. This is a maximum estimate,
however, that assumes the entire 3200 km?> of fresh water
passed across the bedform field, which was probably not
the case (Uchupi et al., 2001; Donnelly et al., 2005).

Using existing and new data from the Hudson River
basin, Donnelly et al. (2005) were able to constrain
the timing of this flood event to 11,450 '*C year BP
(~13,350 cal BP). They suggest that this release of
meltwater may have triggered the Intra-Allerod Cold
Period (IACP) by inhibiting thermohaline circulation.
The data from the HSV presented in this paper indicate
that there is physical evidence of this addition of
freshwater to the western North Atlantic.

5. Conclusions

The present Hudson Shelf Valley (HSV) was likely
carved initially by fluvial processes during the advance of
the Laurentide Ice Sheet, and subsequently by drainage of
early glacial lakes in the Lake Ontario and Hudson River
basins. The catastrophic failure of the terminal moraine at
the Narrows (between Staten and Long Islands, New
York) allowed post-Last Glacial Maximum glacial lakes
to drain across the continental shelf. This flood event
imparted to the Valley its modern form, including banks,
levees, and a large field of subaqueous bedforms.

The timing of the flood event can be constrained
between 12,000 and 10,300 '*C year BP, corresponding
to a series of catastrophic floods and lake-level changes
in upstream lakes Iroquois, Albany, and Vermont that
affected freshwater flux down the Hudson River.
Available data on the specific timing of the flood event
suggest an age of ~ 11,450 '*C year BP (~ 13,350 cal
BP). The freshwater flux during the flood event may
have been a trigger for the Intra-Allered Cold Period.

Acknowledgments

Multibeam bathymetry surveys were conducted in
cooperation with the Canadian Hydrographic Survey
using the research vessel Frederick G. Creed. Bill
Danforth, Jane Denny, Dave Foster, Linda Lotto, and
Tammie Middleton processed the multibeam and
seismic data. Caroline Roberts drafted the figures. We
thank Steve Colman, Dave Twichell, David Mosher, and
Bill Ryan for reviewing a draft of this paper.
Contribution 11351 of the Woods Hole Oceanographic
Institution. Support for N. Driscoll was provided by the
Office of Naval Research and the National Science
Foundation.

References

Alexander, J., Bridge, J.S., Cheel, R.J., Leclair, S.F., 2001. Bedforms and
associated sedimentary structures formed under supercritical water
flows over aggrading sand beds. Sedimentology 48, 133—152.

Allen, J.R.L., 1968. The nature and origin of bedform hierarchies.
Sedimentology 10, 161-182.

Allen, J.R.L., 1982. Sedimentary Structures: Their Character and
Physical Basis. Elsevier, Amsterdam.

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C.,
Clark, P.U., 1997. Holocene climatic instability: a prominent,
widespread event 8200 yr ago. Geology 25, 483—486.

Ashley, G.M., 1990. Classification of large-scale subaqueous bed-
forms: a new look at an old problem. Journal of Sedimentary
Petrology 60, 160—172.

Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews,
J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J.,
Morehead, M.D., Gagnon, J.-M., 1999. Forcing of the cold event
of 8,200 years ago by catastrophic drainage of Laurentide lakes.
Nature 400, 344—348.

Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G.,
Faure, G., Rougerie, F., 1996. Deglacial sea-level record from
Tahiti corals and the timing of global meltwater discharge. Nature
382, 241-244.

Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S.,
Bonani, G., Woelfli, W., 1989. Routing of meltwater from the
Laurentide ice sheet during the Younger Dryas cold episode. Nature
341, 318-321.

Butman, B., Middleton, T.J., Thieler, E.R., Schwab, W.C., 2003.
Topography, Shaded Relief and Backscatter Intensity of the
Hudson Shelf Valley, Offshore of New York. U.S. Geological
Survey Open-File Report 03-372, 1 CD-ROM.



E.R. Thieler et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 246 (2007) 120-136 135

Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi,
J.M., Teller, J.T., 2001. Freshwater forcing of abrupt climate
change during the last glaciation. Science 293, 283-287.

Dillon, W.P., Oldale, R.N., 1978. Late Quaternary sea-level curve:
reinterpretation based on glaciotectonic influence. Geology 6,
56—60.

Donnelly, J.P., Driscoll, N.W., Uchupi, E., Keigwin, L.D., Schwab, W.C.,
Thieler, E.R., Swift, S.A., 2005. Catastrophic meltwater discharge
down the Hudson River valley: a potential trigger for the Intra-
Allered Cold Period. Geology 33, 89-92.

Emery, K.O., Garrison, L.E., 1967. Sea levels 7000 to 20,000 years
ago. Science 157, 684—687.

Emery, K.O., Uchupi, E., 1972. Western North Atlantic Ocean:
Topography, Rocks, Structure, Water, Life, Sediment. American
Association of Petroleum Geologists Memoir 17. American
Association of Petroleum Geologists, Tulsa, Oklahoma. 532 pp.

Ewing, J., LePichon, X., Ewing, M., 1963. Upper stratification of
Hudson Apron region. Journal of Geophysical Research 68,
6303-6316.

Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record:
influence of glacial melting rates on the Younger Dryas event and
deep-ocean circulation. Nature 342, 637-642.

Fanning, A.F., Weaver, A.J., 1997. Temporal-geographical meltwater
influences on the North Atlantic conveyor: implications for the
Younger Dryas. Paleoceanography 12, 307-320.

Fluhr, T.W., 1962. New York Bay—bedrock profile. Geological
Society of America Bulletin 73, 261-262.

Ganopolski, A., Rahmstorf, S., 2001. Rapid changes of glacial climate
simulated in a coupled climate model. Nature 409, 153—158.
Gaswirth, S.B., Ashley, G.M., Sheridan, R.E., 2002. Use of seismic
stratigraphy to identify conduits for saltwater intrusion in the
vicinity of Raritan Bay, New Jersey. Environmental and Engi-

neering Geoscience 8, 209-218.

Kennedy, J.F., 1963. The mechanics of dunes and antidunes in
erodible-bed channels. Journal of Fluid Mechanics 16, 521-544.

Knebel, H.J., Spiker, E.C., 1977. Thickness and age of surficial sand
sheet, Baltimore Canyon Trough area. American Association of
Petroleum Geologists Bulletin 61, 861-871.

Knebel, H.J., Wood, S.A., Spiker, E.C., 1979. Hudson River: evidence
for extensive migration on the exposed continental shelf during
Pleistocene time. Geology 7, 254-258.

Licciardi, J.M., Teller, J.T., Clark, P.U., 1999. Freshwater routing by the
Laurentide ice sheet during the last deglaciation. In: Clark, P.U.,
Webb, R.S., Keigwin, L.D. (Eds.), Mechanisms of Global Climate
Change at Millennial Time Scales. American Geophysical Union,
Washington, pp. 177-201.

Liu, J.P, Milliman, J.D., Gao, S., Cheng, P., 2004. Holocene
development of the Yellow River’s subaqueous delta, North
Yellow Sea. Marine Geology 209, 45—67.

Manabe, S., Stouffer, R.J., 1997. Coupled ocean-atmosphere model
response to freshwater input: comparison to Younger Dryas event.
Paleooceanography 12, 321-336.

Middleton, G.V., 1965. Antidune cross-bedding in a large flume.
Journal of Sedimentary Petrology 35, 922-927.

Middleton, G.V., Hampton, M.A., 1976. Subaqueous sediment
transport and deposition by sediment gravity flows. In: Stanley,
D.J., Swift, D.J.P. (Eds.), Marine Sediment Transport and
Environmental Management. Wiley, New York, pp. 197-218.

Milliman, J.D., Emery, K.O., 1968. Sea level during the past
35,000 years. Science 162, 1121-1123.

Milliman, J.D., Jiezao, Z., Anchun, L., Ewing, J.I., 1990. Late
Quaternary sedimentation on the outer and middle New Jersey

continental shelf: result of two local deglaciations? Journal of
Geology 98, 966-976.

Muller, E.H., Prest, V.K., 1985. Glacial Lakes in the Ontario basin. In:
Karrow, P.F., Calkin, P.E. (Eds.), Quaternary Evolution of the Great
Lakes. Geological Association of Canada Special Paper, vol. 30,
pp. 213-229.

Newman, W.S., Thurber, D.L., Zwiss, H.S., Rokach, A., Musich, L.,
1969. Late Quaternary geology of the Hudson River estuary: a
preliminary report. New York Academy of Sciences Transactions,
Serial 2 (31), 548-570.

Pair, D.L., Rodrigues, C.G., 1993. Late Quaternary deglaciation of the
southwestern St. Lawrence Lowland, New York and Ontario.
Geological Society of America Bulletin 105, 1151-1164.

Poag, C.W., 1978. Stratigraphy of the Atlantic continental shelf and
slope of the United States. Annual Review of Earth and Planetary
Sciences 6, 251-280.

Rahmstorf, S., 1995. Bifurcations of the Atlantic thermohaline
circulation in response to changes in the hydrological cycle. Nature
378, 145-149.

Rayburn, J.A., Knuepfer, P.L.K., Franzi, D.A., 2005. A series of large,
Late Wisconsinan meltwater floods through the Champlain and
Hudson Valleys, New York State, USA. Quaternary Science
Reviews 24, 2410-2419.

Reineck, H.-E., Singh, 1.B., 1980. Depositional Sedimentary Environ-
ments. Springer-Verlag, New York.

Richard, P.J.H., Occhietti, S., 2005. '“C chronology for ice retreat and
inception of Champlain Sea in the St. Lawrence Lowlands,
Canada. Quaternary Research 63, 353—-358.

Ridge, J.C., 1997. Shed Brook Discontinuity and Little Falls Gravel:
evidence for the Erie interstade in central New York. Geological
Society of America Bulletin 109, 652—665.

Ridge, J.C., Besonen, M.R., Brochu, M., Brown, S.L., Callahan, J.W.,
Cook, G.J., Nicholson, R.S., Toll, N.J., 1999. Varve, paleomag-
netic and '“C chronologies for Late Pleistocene events in New
Hampshire and Vermont (U.S.A.). Géographie Physique et
Quaternaire 53, 79—-106.

Rodrigues, C.G., 1988. Late Quaternary invertebrate faunal associa-
tions and chronology of the western Champlain Sea Basin. In:
Gadd, N.R. (Ed.), The Late Quaternary Development of the
Champlain Sea Basin. Geological Association of Canada Special
Paper, vol. 35, pp. 155-176.

Schwab, W.C., Allison, M.A., Corso, W., Lotto, L.L., Butman, B.,
Buchholtz ten Brink, M., Denny, J.F., Danforth, W.W., Foster, D.S.,
1997a. Initial results of high-resolution sea-floor mapping offshore of
the New York—New Jersey metropolitan area using sidescan sonar.
Northeastern Geology and Environmental Sciences 19, 243-262.

Schwab, W.C., Corso, W., Allison, M.A., Butman, B., Denny, J.F., Lotto,
L., Danforth, W.W., Foster, D.S., O’Brien, T.F., Nichols, D.A., Irwin,
B.J., Parolski, K.F., 1997b. Mapping the sea floor geology offshore of
the New York—New Jersey metropolitan area using sidescan sonar:
preliminary report. U.S. Geological Survey Open-File Report 97-61.
3 map sheets.

Schwab, W.C., Thieler, E.R., Allen, J.R., Foster, D.S., Swift, B.A.,
Denny, J.F., 2000. Influence of inner-shelf geologic framework on
the evolution and behavior of the barrier system between Fire
Island Inlet to Shinnecock Inlet, Long Island, New York. Journal of
Coastal Research 16, 408—422.

Schwab, W.C., Denny, J.F., Foster, D.S., Lotto, L.L., Allison, M.A.,
Uchupi, E., Swift, B.A., Danforth, W.W., Thieler, E.R., Butman,
B., 2003. High-resolution Quaternary Seismic Stratigraphy of the
New York Bight Continental Shelf. U.S. Geological Survey Open-
File Report 02-152, 1 DVD-ROM.



136 E.R. Thieler et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 246 (2007) 120-136

Soren, J., 1971. Results of subsurface exploration in the mid-island
area of western Suffolk County, Long Island, New York. Long
Island Water Resources Bulletin, vol. 1. 60 pp.

Stanford, S.D., 1993. Late Cenozoic surficial deposits and valley
evolution of unglaciated northern New Jersey. Geomorphology 7,
267-288.

Stanford, S.D., Harper, D.P., 1991. Glacial lakes of the lower Passaic,
Hackensack, and lower Hudson valleys, New Jersey and New
York. Northeastern Geology 13, 271-286.

Suter, R., deLaguna, W., Perlmutter, N.M., 1949. Mapping of geologic
formations and aquifers of Long Island, New York. State of New
York Department of Conservation Water Power and Control
Commission Bulletin GW-18. 212 pp.

Swift, D.J.P., Moir, R., Freeman, G.L., 1980. Quaternary rivers on the
New Jersey shelf: relation of seafloor to buried valleys. Geology 8,
276-280.

Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater
outbursts to the oceans from glacial Lake Agassiz and their role
in climate change during the last deglaciation. Quaternary Science
Reviews 21, 879-887.

Thompson, H.D., 1936. Hudson Gorge in the Highlands. Geological
Society of America Bulletin 47, 1831—-1848.

Twichell, D.C., Knebel, H.J., Folger, D.W., 1977. Delaware River:
evidence for its former extension to Wilmington submarine
canyon. Science 195, 483—485.

Uchupi, E., Driscoll, N., Ballard, R.D., Bolmer, S.T., 2001. Drainage
of late Wisconsin glacial lakes and the morphology and late
Quaternary stratigraphy of the New Jersey—southern New England
continental shelf and slope. Marine Geology 172, 117-145.

Veatch, A.C., Smith, P.A., 1939. Atlantic Submarine Valleys of the
United States and the Congo Submarine Valley. Geological Society
of America Special Paper 7 101 pp.

Weiss, D., 1974. Late Pleistocene stratigraphy and paleoecology of the
lower Hudson River estuary. Geological Society of America
Bulletin 85, 1561-1570.

Williams, S.J., 1976. Geomorphology, Shallow Subbottom Structure,
and Sediments of the Atlantic Inner Continental Shelf off Long
Island, New York. U.S. Army Corps of Engineers, Coastal
Engineering Research Center, Technical Paper, vol. 76-2. 123 pp.

Williams, S.J., Duane, D.B., 1974. Geomorphology and Sediments of
the Inner New York Bight Continental Shelf. U.S. Army Corps of
Engineers, Coastal Engineering Research Center, Report TM-45.

81 pp.



	A catastrophic meltwater flood event and the formation of the Hudson Shelf Valley
	Introduction
	Study area
	Methods

	Results
	Seismic–stratigraphic framework
	Bathymetry
	Bedform field

	Discussion
	Glacial drainage and timing of the meltwater flood
	Shelf valley and bedform formation
	Freshwater flux and possible climatic response

	Conclusions
	Acknowledgments
	References


