25 research outputs found

    Estudio semiótico-comunicativo de la construcción de significados

    Get PDF
    El estudio indaga la actuación de profesores a partir de la caracterización de sus explicaciones en clases de física universitaria. La aproximación metodológica es cualitativa. Es un estudio descriptivo-interpretativo de casos. Considerando el carácter social, didáctico, semiótico, comunicativo y multimodal de las clases de ciencias, seleccionamos el referente teórico aportado por Ogborn (1996). Los resultados aportan ‘pistas’ acerca de ‘cómo’ los profesores transforman su conocimiento disciplinar en enseñable; también cómo contribuye tal ‘hacer’ al desarrollo de habilidades y capacidades requeridos por el estudiante de ingeniería para ser un profesional competente. Permitió extraer elementos de la práctica docente, que pueden orientarse hacia y para la mejora de la práctica del profesorado de física

    Módulo online de cinemática como soporte a la enseñanza semipresencial de la Física en Ingeniería

    Get PDF
    Las nuevas tecnologías en materia de información y comunicación nos ofrecen las oportunidades para un mayor aprovechamiento de las herramientas y recursos, que permita mejorar el proceso de enseñanza-aprendizaje. Aprovechando las nuevas oportunidades que ofrecen medios como internet se diseñó y desarrolló un sistema hipermedial (website) denominado: programa SEHCP (Software Educativo Hipermedia Cinemática de la Partícula) como soporte al proceso de enseñanza-aprendizaje del tema Cinemática de la Partícula. El software fue utilizado por una muestra representativa de los tipos de destinatarios para los que fue diseñado y la consiguiente evaluación diagnóstica; la muestra estuvo conformada por alumnos de la asignatura Física Mecánica y alumnos del Curso Introductorio de la Facultad de Ingeniería de la Universidad de Carabobo-Venezuela

    Rapid Ring-Opening Metathesis Polymerization of Monomers Obtained from Biomass-Derived Furfuryl Amines and Maleic Anhydride

    Get PDF
    Well-controlled and extremely rapid ring-opening metathesis polymerization of unusual oxanorbornene lactam esters by Grubbs third-generation catalyst is used to prepare a range of bio-based homo- and copolymers. Bio-derived oxanorbornene lactam monomers were prepared at room temperature from maleic anhydride and secondary furfuryl amines by using a 100 % atom economical, tandem Diels–Alder lactamization reaction, followed by esterification. Several of the resulting homo- and copolymers show good control over polymer molecular weight and have narrow molecular weight distributions

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The global spectrum of plant form and function

    Full text link

    Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales

    Get PDF
    Plant functional traits summarize the main variability in plant form and function across taxa and biomes. We assess whether geographic range size, climatic niche size, and local abundance of plants can be predicted by sets of traits (trait syndromes) or are driven by single traits. Location: Eurasia. Methods: Species distribution maps were extracted from the Chorological Database Halle to derive information on the geographic range size and climatic niche size for 456 herbaceous, dwarf shrub and shrub species. We estimated local species abundances based on 740,113 vegetation plots from the European Vegetation Archive, where abundances were available as plant species cover per plot. We compiled a complete species-by-trait matrix of 20 plant functional traits from trait databases (TRY, BiolFlor and CLO-PLA). The relationships of species’ geographic range size, climatic niche size and local abundance with single traits and trait syndromes were tested with multiple linear regression models. Results: Generally, traits were more strongly related to local abundances than to broad-scale species distribution patterns in geographic and climatic space (range and niche size), but both were better predicted by trait combinations than by single traits. Local abundance increased with leaf area and specific leaf area (SLA). Geographic range size and climatic niche size both increased with SLA. While range size increased with plant height, niche size decreased with leaf carbon content. Conclusion: Functional traits matter for species’ abundance and distribution at both local and broad geographic scale. Local abundances are associated with different combinations of traits as compared to broad-scale distributions, pointing to filtering by different environmental and ecological factors acting at distinct spatial scales. However, traits related to the leaf economics spectrum were important for species’ abundance and occurrence at both spatial scales. This finding emphasizes the general importance of resource acquisition strategies for the abundance and distribution of herbaceous, dwarf shrub and shrub species
    corecore