58 research outputs found

    Evolution der Genexpression am Beispiel zweier Subspezies der Hausmaus und populationsgenetische Analyse eines jungen Gens

    Get PDF
    Seit mehr als 50 Jahren wird vermutet, dass die Evolution der Genregulation eine wichtige Rolle fĂŒr die Evolution der Organismen spielt. Allein Unterschiede in proteinkodierenden Regionen der Gene erscheinen unzureichend, um die Vielfalt des Lebens umfassend zu erklĂ€ren. In jĂŒngerer Vergangenheit werden immer mehr Beispiele fĂŒr regulatorische Evolution gefunden. Wie wichtig regulatorische Evolution im VerhĂ€ltnis zur Evolution kodierender Bereiche ist, und ob sie neutral evolviert oder in erster Linie durch die Wirkung positiver Selektion geformt wird, ist Gegenstand lebhafter Debatten. In der vorliegenden Doktorarbeit wird anhand zweier Subspezies der Hausmaus untersucht, ob die Genregulation der Erwartung eines neutralen Evolutionsmodells und damit dem Prinzip der molekularen Uhr folgt. Die neutrale Erwartung wĂ€re, dass die Divergenz der Genexpression von der Mutationsrate, die zu VerĂ€nderungen der Genexpression fĂŒhrt, abhĂ€ngt. Um die Mutationsrate abzuschĂ€tzen, wird in der vorliegenden Studie die VariabilitĂ€t innerhalb einer Subspezies der Hausmaus herangezogen (Genexpressionspolymorphismus). Es wird eine Methode entwickelt, um die gemessene Varianz der Genexpression in den Subspezies der Hausmaus soweit von technischen Messeffekten zu befreien, dass die echte, biologische VariabilitĂ€t zugĂ€nglich wird. In diesem Zusammenhang wird auch eine neue Methode zur Normalisierung von Quantitative Real Time PCR-Experimenten entwickelt, die von der Verwendung einzelner Referenzgene unabhĂ€ngig ist und so erhöhte ZuverlĂ€ssigkeit bietet. Mit diesen neuen Instrumenten wird die Genexpression von 24 Genen, die in einem vorangegangenen Microarrayexperiment als zwischen den Subspezies differentiell exprimiert klassifiziert wurden, untersucht. Es wird gezeigt, dass die Divergenz der Genexpression tatsĂ€chlich vom Expressionspolymorphismus abhĂ€ngt und damit ein neutrales Modell der Genexpressionsevolution gestĂŒtzt. Eine Korrelation des Sequenzpolymorphismus stromaufwĂ€rts der untersuchten Gene mit dem Polymorphismus der Genexpression legt Ă€hnliche Evolutionsmechanismen von DNA-Sequenz und Genexpression nahe. AdditivitĂ€t und KontinuitĂ€t werden als Grundlagen der Evolution der Genexpression bestĂ€tigt. Es werden keine Hinweise auf ein vermehrtes Auftreten positiver Selektion unter den zwischen den Subspezies unterschiedlich exprimierten Genen gefunden. Interessanterweise ist die Mehrzahl der Expressionsunterschiede zwischen den Subspezies gewebespezifisch (zehn von zwölf). Die genetische VariabilitĂ€t der StromaufwĂ€rtsregion ist fĂŒr eines der Gene (Poldi) in der östlichen Hausmaus stark reduziert. WeiterfĂŒhrende, in dieser Studie erhobene populationsgenetische Daten zeigen, dass die genomische Region, welche Poldi enthĂ€lt, die Signatur eines rezenten Selektionsereignisses trĂ€gt. Mögliche Ursachen fĂŒr das Selektionsereignis konnten identifiziert werden. Interessanterweise ist Poldi ein Orphan Gen: Trotz ausgeprĂ€gter SyntĂ€nie zu Ratte und Mensch entsteht in diesen Spezies kein homologes Transkript. In einer frĂŒheren Arbeit konnte das erste Auftreten des Transkripts im Genus Mus auf einen Zeitraum vor etwa zwei Millionen Jahren datiert werden. In dieser Arbeit wird anhand von Sequenzdaten verschiedener Mausspezies eine Mutationen am 5' Ende des ersten Exons identifiziert, die mit dem ersten Auftreten des Transkripts korreliert. Eine unabhĂ€ngige Mutation an einer spleißrelevanten Position am 3' Ende des ersten Exons legt einen sekundĂ€ren Verlust des Transkripts in Mus spicilegus nahe

    InterdisziplinĂ€re Überlegungen zu Erweiterten DNA-Analysen (Interdisciplinary considerations about new and emerging forensic DNA analyses)

    Get PDF
    Due to a change in law in December 2019, the use of "Forensic DNA Phenotyping“, i.e. technologies for the prediction of skin, hair and eye color as well as age, is now permitted in the context of criminal investigations. This article discusses the reliability, usefulness and legitimacy of such extended DNA technologies and thus the framework conditions for their application in Germany. It is revealed how complicated, error-prone, demanding, ambitious and sensitive the use of these technologies in investigations can be if appropriate precautions are not taken and if they are not limited to prudently supervised individual cases. Finally, based on this analysis, measures for the application and regulation of extended DNA technologies in Germany are proposed

    Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster

    Get PDF
    Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid adaptation is a current challenge in evolutionary biology. Comparative studies show that genes with immune function are among the most rapidly evolving genes across a range of taxa. Here, we use immune defence in natural populations of Drosophila melanogaster to understand the rate of evolution in natural populations and the genetics underlying rapid change. We probed the immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to measure post-infection survival and bacterial load of wild D. melanogaster populations collected across seasonal time along a latitudinal transect along eastern North America (Massachusetts, Pennsylvania and Virginia). There are pronounced and repeatable changes in the immune response over the approximately 10 generations between spring and autumn collections, with a significant but less distinct difference observed among geographical locations. Genes with known immune function are not enriched among alleles that cycle with seasonal time, but the immune function of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 (Tep3) have different functional responses to infection and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles underlie the immune phenotypes observed in natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our understanding of the complex ecological and genetic interactions determining the evolution of immune defence in natural populations

    Disparate Population and Holobiont Structure of Pocilloporid Corals Across the Red Sea Gradient Demonstrate Species-Specific Evolutionary Trajectories

    Get PDF
    Global habitat degradation heightens the need to better understand patterns of genetic connectivity and diversity of marine biota across geographical ranges to guide conservation efforts. Corals across the Red Sea are subject to pronounced environmental differences, but studies so far suggest that animal populations are largely connected, excepting evidence for a genetic break between the northern-central and southern regions. Here, we investigated population structure and holobiont assemblage of two common pocilloporid corals, Pocillopora verrucosa and Stylophora pistillata, across the Red Sea. We found little evidence for population differentiation in P. verrucosa, except for the southernmost site. Conversely, S. pistillata exhibited a complex population structure with evidence for within-reef and regional genetic differentiation, in line with differences in their reproductive mode (P. verrucosa is a broadcast spawner and S. pistillata is a brooder). Analysis for genomic loci under positive selection identified 85 sites (18 of which were in coding sequences) that distinguished the southern P. verrucosa population from the remainder of the Red Sea population. By comparison, we found 128 loci (24 of which were residing in coding sequences) in S. pistillata with evidence for local adaptation at various sites. Functional annotation of the underlying proteins revealed putative roles in the response to stress, lipid metabolism, transport, cytoskeletal rearrangement, and ciliary function (among others). Microbial assemblages of both coral species showed pervasive association with microalgal symbionts from the genus Symbiodinium (former clade A) and bacteria from the genus Endozoicomonas that exhibited significant differences according to host genotype and environment. The disparity of population genetic and holobiont assemblage patterns even between closely related species (family Pocilloporidae) highlights the need for multispecies investigations to better understand the role of the environment in shaping evolutionary trajectories. It further emphasizes the importance of networks of reef reserves to achieve conservation of genetic variants critical to the future survival of coral ecosystems

    The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe

    Get PDF
    International audienceDrosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here we report fourteen DNA viruses detected in a metagenomic analysis of approximately 6500 pool-sequenced Drosophila, sampled from 47 European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a dsRNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to 12 segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2% or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly-available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D. melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses

    Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses

    Get PDF
    Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.Publisher PDFPeer reviewe

    Drosophila evolution over space and time (DEST):A new population genomics resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of MĂŒnster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe

    Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

    Get PDF
    Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase ÎČ-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis

    Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.We thank four reviewers and the handling editor for helpful comments on previous versions of our manuscript. We are grateful to the members of the DrosEU and DrosRTEC consortia for their long-standing support, collaboration, and for discussion. DrosEU was funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). M.K. was supported by the Austrian Science Foundation (grant no. FWF P32275); J.G. by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); T.F. by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of MĂŒnster; AOB by the National Institutes of Health (R35 GM119686); M.K. by Academy of Finland grant 322980; V.L. by Danish Natural Science Research Council (FNU) (grant no. 4002-00113B); FS Deutsche Forschungsgemeinschaft (DFG) (grant no. STA1154/4-1), Project 408908608; J.P. by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; A.U. by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) (grant no. 1737/17); M.S.V., M.S.R. and M.J. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); A.P., K.E. and M.T. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551. The authors acknowledge Research Computing at The University of Virginia for providing computational resources and technical support that have contributed to the results reported within this publication (https://rc.virginia.edu, last accessed September 6, 2021)

    Corrigendum to: Drosophila Evolution over Space and Time (DEST): a New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of MĂŒnster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe
    • 

    corecore