52 research outputs found

    Morphological Evolution and the Ages of Early-Type Galaxies in Clusters

    Get PDF
    Morphological and spectroscopic studies of high redshift clusters indicate that a significant fraction of present-day early-type galaxies was transformed from star forming galaxies at z<1. On the other hand, the slow luminosity evolution of early-type galaxies and the low scatter in their color-magnitude relation indicate a high formation redshift of their stars. In this paper we construct models which reconcile these apparently contradictory lines of evidence, and we quantify the effects of morphological evolution on the observed photometric properties of early-type galaxies in distant clusters. We show that in the case of strong morphological evolution the apparent luminosity and color evolution of early-type galaxies are similar to that of a single age stellar population formed at z=infinity, irrespective of the true star formation history of the galaxies. Furthermore, the scatter in age, and hence the scatter in color and luminosity, is approximately constant with redshift. These results are consequences of the ``progenitor bias'': the progenitors of the youngest low redshift early-type galaxies drop out of the sample at high redshift. We construct models which reproduce the observed evolution of the number fraction of early-type galaxies in rich clusters and their color and luminosity evolution simultaneously. Our modelling indicates that approx. 50% of early-type galaxies were transformed from other galaxy types at z<1, and their progenitor galaxies may have had roughly constant star formation rates prior to morphological transformation. After correcting the observed evolution of the mean M/L_B ratio for the maximum progenitor bias we find that the mean luminosity weighted formation redshift of stars in early-type galaxies z_*=2.0^{+0.3}_{-0.2} for Omega_m=0.3 and Omega_Lambda=0.7. [ABRIDGED]Comment: Accepted for publication in The Astrophysical Journal. 13 pages, 6 figure

    Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport

    Get PDF
    AbstractHuntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates

    International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763

    A randomized controlled trial of nonoperative treatment versus open reduction and internal fixation for stable, displaced, partial articular fractures of the radial head: The RAMBO trial

    Get PDF
    Background: The choice between operative or nonoperative treatment is questioned for partial articular fractures of the radial head that have at least 2 millimeters of articular step-off on at least one radiograph (defined as displaced), but less than 2 millimeter of gap between the fragments (defined as stable) and that are not associated with an elbow dislocation, interosseous ligament injury, or other fractures. These kinds of fractures are often classified as Mason type-2 fractures. Retrospective comparative studies suggest that operative treatment might be better than nonoperative treatment, but the long-term results of nonoperative treatment are very good. Most experts agree that problems like reduced range of motion, painful crepitation, nonunion or bony ankylosis are infrequent with both nonoperative and operative treatment of an isolated displaced partial articular fracture of the radial head, but determining which patients will have problems is difficult. A prospective, randomized comparison would help minimize bias and determine the balance between operative and nonoperative risks and benefits. Methods/Design. The RAMBO trial (Radial Head - Amsterdam - Amphia - Boston - Others) is an international prospective, randomized, multicenter trial. The primary objective of this study is to compare patient related outcome defined by the 'Disabilities of Arm, Shoulder and Hand (DASH) score' twelve months after injury between operative and nonoperative treated patients. Adult patients with partial articular fractures of the radial head that comprise at least 1/3rd of the articular surface, have ≥ 2 millimeters of articular step-off but less than 2 millimeter of gap between the fragments will be enrolled. Secondary outcome measures will be the Mayo Elbow Performance Index (MEPI), the Oxford Elbow Score (OES), pain intensity through the 'Numeric Rating Scale', range of motion (flexion arc and rotational arc), radiographic appearance of the fracture (heterotopic ossification, radiocapitellar and ulnohumeral arthrosis, fracture healing, and signs of implant loosening or breakage) and adverse events (infection, nerve injury, secondary interventions) after one year. Discussion. The successful completion of this trial will provide evidence on the best treatment for stable, displaced, partial articular fractures of the radial head. Trial registration. The trial is registered at the Dutch Trial Register: NTR3413

    Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals

    Get PDF
    The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.</p

    Heavy menstrual bleeding on direct factor Xa inhibitors: Rationale and design of the MEDEA study

    Get PDF
    Background: In premenopausal women, treatment with direct oral factor Xa inhibitors is associated with an increased risk of heavy menstrual bleeding (HMB) compared with vitamin K antagonists (VKA). Treatment with the direct oral thrombin inhibitor dabigatran appears to be associated with a reduced risk of HMB compared with VKA. These findings come from small observational studies or post hoc analyses of trials in which HMB was not a primary outcome. Use of tranexamic acid during the menstrual period may be effective in patients with HMB, but prospective data regarding efficacy and safety in patients on anticoagulant treatment are lacking. Rationale and Design: A direct comparison of a factor Xa inhibitor and a thrombin inhibitor with HMB as primary outcome, as well as an evaluation of the effects of adding tranexamic acid in women with anticoagulant-associated HMB is highly relevant for clinical practice. The MEDEA study is a randomized, open-label, pragmatic clinical trial to evaluate management strategies in premenopausal women with HMB associated with factor Xa inhibitor therapy. Outcomes: Women using factor Xa inhibitors with proven HMB, as assessed by a pictorial blood loss assessment chart (PBAC) score of >150, will be randomized to one of three study arms: (i) switch to dabigatran; (ii) continue factor Xa inhibitor with addition of tranexamic acid during the menstrual period; or (iii) continue factor Xa inhibitor without intervention. The primary outcome is the difference in PBAC score before and after randomization. Here, we present the rationale and highlight several unique features in the design of the study

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The kinase activity of PKR represses inflammasome activity

    No full text
    The protein kinase R (PKR) functions in the antiviral response by controlling protein translation and inflammatory cell signaling pathways. We generated a transgenic, knock-in mouse in which the endogenous PKR is expressed with a point mutation that ablates its kinase activity. This novel animal allows us to probe the kinase-dependent and -independent functions of PKR. We used this animal together with a previously generated transgenic mouse that is ablated for PKR expression to determine the role of PKR in regulating the activity of the cryopyrin inflammasome. Our data demonstrate that, in contradiction to earlier reports, PKR represses cryopyrin inflammasome activity. We demonstrate that this control is mediated through the established function of PKR to inhibit protein translation of constituents of the inflammasome to prevent initial priming during innate immune signaling. These findings identify an important role for PKR to dampen inflammation during the innate immune response and caution against the previously proposed therapeutic strategy to inhibit PKR to treat inflammation
    corecore