17 research outputs found

    HI properties of massive galaxies from stacking

    Get PDF
    Galaxies have been found to divide into two families: one dominated by late-type, star forming, blue objects, which are rich in cold gas and have a low stellar mass surface density (mu*); the other is made of early-type, red and passive galaxies with higher mu* and on average low gas content. The physical mechanisms responsible for the galaxy transition between the active and passive regime are still debated. In the high mass range, mechanisms proposed to quench the star formation (SF) through cold gas heating or depletion are not efficient enough to reproduce the correct red sequence of passive systems, when implemented in models of galaxy evolution. Input for a better understanding of the physics of quenching mechanisms, and of their relative importance and efficiency, can come from a comparison of the cold atomic neutral hydrogen (HI) content and SF for a statistically significant sample of massive systems where quenching is at work. However, existing surveys do not sample this high mass, gas poor regime well enough. In this work, we study the HI properties of a volume-limited sample of ~5000 nearby galaxies with stellar mass M*>10^10 Msun, selected from the state-of-the-art blind HI survey ALFALFA to have optical and ultraviolet data so that star formation and galaxy properties can be derived. As ALFALFA does not sample with sufficient sensitivity the high mass, gas poorest range, we developed a software tool to co-add its data, in order to obtain average gas properties of galaxy classes which individually may be largely undetected. Using this technique, we study three types of quenching processes, namely the presence of a bulge component, feedback from an active galactic nucleus (AGN), and environmental mechanisms acting on the interstellar medium. Simulations of early-type galaxies with non star-forming HI disks have suggested that the presence of a bulge can stabilize the gas, thus preventing star formation, but on average we do not observe this. We find that, once mu* and NUV-r colours are fixed, the HI gas fraction in massive bulge- and disk-dominated galaxies is the same. A similar negative result is obtained if we compare M_HI/M* of AGN hosts and control galaxies, despite simulations that invoke feedback from AGN to heat or deplete cold gas in massive systems. The relation we observe between the cold gas content and the accretion rate in the red population actually points towards a co-evolution of SF and AGN activity, both driven by the amount of gas available. The last class of quenching mechanisms studied in this work includes environmental processes, which are known to affect the SF properties of galaxies and, at least in rich clusters, their cold gas content. For the first time, though, we study the effect of the environment on the HI content as a continuous function of local density, comparing it with global and inner specific star formation rate. The gradual increase in the suppression of SF from the inner to the outer regions that we observe, and the even stronger HI deficiency as a function of increasing local density, can be explained by a mechanism acting on the disk from the outside-in, like ram-pressure stripping of the HI. A comparison with mock catalogs from models, which include only removal of the hot gas, shows how models underestimate environmental effects, especially on the cold gas component of galaxies. We therefore suggest that, in order to improve our understanding of the galaxy bimodality in the local Universe, observations and models should particularly focus on environmental mechanisms acting on the cold interstellar medium. These processes are efficient over a broader range of local densities than previously thought, and could solve parts of the puzzle in the formation of massive and passive systems

    ALFALFA HI Data Stacking III. Comparison of environmental trends in HI gas mass fraction and specific star formation rate

    Full text link
    It is well known that both the star formation rate and the cold gas content of a galaxy depend on the local density out to distances of a few Megaparsecs. In this paper, we compare the environmental density dependence of the atomic gas mass fractions of nearby galaxies with the density dependence of their central and global specific star formation rates. We stack HI line spectra extracted from the Arecibo Legacy Fast ALFA survey centered on galaxies with UV imaging from GALEX and optical imaging/spectroscopy from SDSS. We use these stacked spectra to evaluate the mean atomic gas mass fraction of galaxies in bins of stellar mass and local density. For galaxies with stellar masses less than 10^10.5 M_sun, the decline in mean atomic gas mass fraction with density is stronger than the decline in mean global and central specific star formation rate. The same conclusion does not hold for more massive galaxies. We interpret our results as evidence for ram-pressure stripping of atomic gas from the outer disks of low mass satellite galaxies. We compare our results with the semi-analytic recipes of Guo et al. (2011) implemented on the Millennium II simulation. These models assume that only the diffuse gas surrounding satellite galaxies is stripped, a process that is often termed "strangulation". We show that these models predict relative trends in atomic gas and star formation that are in disagreement with observations. We use mock catalogues generated from the simulation to predict the halo masses of the HI-deficient galaxies in our sample. We conclude that ram-pressure stripping is likely to become effective in dark matter halos with masses greater than 10^13 M_sun.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    Gas-Bearing Early-Type Dwarf Galaxies in Virgo: Evidence for Recent Accretion

    Full text link
    We investigate the dwarf (M_B> -16) galaxies in the Virgo cluster in the radio, optical, and ultraviolet regimes. Of the 365 galaxies in this sample, 80 have been detected in HI by the Arecibo Legacy Fast ALFA survey. These detections include 12 early-type dwarfs which have HI and stellar masses similar to the cluster dwarf irregulars and BCDs. In this sample of 12, half have star-formation properties similar to late type dwarfs, while the other half are quiescent like typical early-type dwarfs. We also discuss three possible mechanisms for their evolution: that they are infalling field galaxies that have been or are currently being evolved by the cluster, that they are stripped objects whose gas is recycled, and that the observed HI has been recently reaccreted. Evolution by the cluster adequately explains the star-forming half of the sample, but the quiescent class of early-type dwarfs is most consistent with having recently reaccreted their gas.Comment: 18 pages, 9 figure

    The GALEX Arecibo SDSS Survey. IV. Baryonic Mass-Velocity-Size Relations of Massive Galaxies

    Full text link
    We present dynamical scaling relations for a homogeneous and representative sample of ~500 massive galaxies, selected only by stellar mass (>10^10 Msun) and redshift (0.025<z<0.05) as part of the ongoing GALEX Arecibo SDSS Survey. We compare baryonic Tully-Fisher (BTF) and Faber-Jackson (BFJ) relations for this sample, and investigate how galaxies scatter around the best fits obtained for pruned subsets of disk-dominated and bulge-dominated systems. The BFJ relation is significantly less scattered than the BTF when the relations are applied to their maximum samples, and is not affected by the inclination problems that plague the BTF. Disk-dominated, gas-rich galaxies systematically deviate from the BFJ relation defined by the spheroids. We demonstrate that by applying a simple correction to the stellar velocity dispersions that depends only on the concentration index of the galaxy, we are able to bring disks and spheroids onto the same dynamical relation -- in other words, we obtain a generalized BFJ relation that holds for all the galaxies in our sample, regardless of morphology, inclination or gas content, and has a scatter smaller than 0.1 dex. We find that disks and spheroids are offset in the stellar dispersion-size relation, and that the offset is removed when corrected dispersions are used instead. The generalized BFJ relation represents a fundamental correlation between the global dark matter and baryonic content of galaxies, which is obeyed by all (massive) systems regardless of morphology. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in MNRAS. GASS publications and released data can be found at http://www.mpa-garching.mpg.de/GASS/index.ph

    ALFALFA HI Data Stacking I. Does the Bulge Quench Ongoing Star Formation in Early-Type Galaxies?

    Full text link
    We have carried out an HI stacking analysis of a volume-limited sample of ~5000 galaxies with imaging and spectroscopic data from GALEX and the Sloan Digital Sky Survey, which lie within the current footprint of the Arecibo Legacy Fast ALFA (ALFALFA) Survey. Our galaxies are selected to have stellar masses greater than 10^10 Msun and redshifts in the range 0.025<z<0.05. We extract a sub-sample of 1833 "early-type" galaxies with inclinations less than 70deg, with concentration indices C>2.6 and with light profiles that are well fit by a De Vaucouleurs model. We then stack HI line spectra extracted from the ALFALFA data cubes at the 3-D positions of the galaxies from these two samples in bins of stellar mass, stellar mass surface density, central velocity dispersion, and NUV-r colour. We use the stacked spectra to estimate the average HI gas fractions M_HI/M_* of the galaxies in each bin. Our main result is that the HI content of a galaxy is not influenced by its bulge. The average HI gas fractions of galaxies in both our samples correlate most strongly with NUV-r colour and with stellar surface density. The relation between average HI fraction and these two parameters is independent of concentration index C. We have tested whether the average HI gas content of bulge-dominated galaxies on the red sequence, differs from that of late-type galaxies on the red sequence. We find no evidence that galaxies with a significant bulge component are less efficient at turning their available gas reservoirs into stars. This result is in contradiction with the "morphological quenching" scenario proposed by Martig et al. (2009).Comment: 21 pages, 15 figures. Accepted for publication in MNRAS. Version with high resolution figures available at http://www.mpa-garching.mpg.de/GASS/pubs.ph

    COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies: I. Relations between H2, HI, stellar content and structural properties

    Get PDF
    We are conducting COLD GASS, a legacy survey for molecular gas in nearby galaxies. Using the IRAM 30m telescope, we measure the CO(1-0) line in a sample of ~350 nearby (D=100-200 Mpc), massive galaxies (log(M*/Msun)>10.0). The sample is selected purely according to stellar mass, and therefore provides an unbiased view of molecular gas in these systems. By combining the IRAM data with SDSS photometry and spectroscopy, GALEX imaging and high-quality Arecibo HI data, we investigate the partition of condensed baryons between stars, atomic gas and molecular gas in 0.1-10L* galaxies. In this paper, we present CO luminosities and molecular hydrogen masses for the first 222 galaxies. The overall CO detection rate is 54%, but our survey also uncovers the existence of sharp thresholds in galaxy structural parameters such as stellar mass surface density and concentration index, below which all galaxies have a measurable cold gas component but above which the detection rate of the CO line drops suddenly. The mean molecular gas fraction MH2/M* of the CO detections is 0.066+/-0.039, and this fraction does not depend on stellar mass, but is a strong function of NUV-r colour. Through stacking, we set a firm upper limit of MH2/M*=0.0016+/-0.0005 for red galaxies with NUV-r>5.0. The average molecular-to-atomic hydrogen ratio in present-day galaxies is 0.3, with significant scatter from one galaxy to the next. The existence of strong detection thresholds in both the HI and CO lines suggests that "quenching" processes have occurred in these systems. Intriguingly, atomic gas strongly dominates in the minority of galaxies with significant cold gas that lie above these thresholds. This suggests that some re-accretion of gas may still be possible following the quenching event.Comment: Accepted for publications in MNRAS. 32 pages, 25 figure

    The GALEX Arecibo SDSS Survey. I. Gas Fraction Scaling Relations of Massive Galaxies and First Data Release

    Get PDF
    We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large program that is gathering high quality HI-line spectra using the Arecibo radio telescope for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05, selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. This paper presents the first Data Release, consisting of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour. A large fraction (~60%) of the galaxies in our sample are detected in HI. We find that the atomic gas fraction decreases strongly with stellar mass, stellar surface mass density and NUV-r colour, but is only weakly correlated with galaxy bulge-to-disk ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few percent) HI decreases sharply above a characteristic stellar surface mass density of 10^8.5 Msun kpc^-2. The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively-evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between gas fraction and other galaxy properties. [abridged]Comment: 25 pages, 12 figures. Accepted for publication in MNRAS. Version with high resolution figures available at http://www.mpa-garching.mpg.de/GASS/pubs.ph

    The impact of interactions, bars, bulges, and AGN on star formation efficiency in local massive galaxies

    Full text link
    Using observations from the GASS and COLD GASS surveys and complementary data from SDSS and GALEX, we investigate the nature of variations in gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us to assess the relative importance of galaxy interactions, bar instabilities, morphologies and the presence of AGN in regulating star formation efficiency. Both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence in the SFR-M* plane. The longest gas depletion times are found in below-main sequence bulge-dominated galaxies that are either gas-poor, or else on average less efficient than disk-dominated galaxy at converting into stars any cold gas they may have. We find no link between AGN and these long depletion times. The galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations, and the gas mass in high density star-forming cores, with interactions, mergers and bar instabilities able to locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas. Building a sample representative of the local massive galaxy population, we derive a global Kennicutt-Schmidt relation of slope 1.18+/-0.24, and observe structure within the scatter around this relation, with galaxies having low (high) stellar mass surface densities lying systematically above (below) the mean relation, suggesting that gas surface density is not the only parameter driving the global star formation ability of a galaxy.Comment: 19 pages, 12 figures, accepted for publication in Ap

    The GALEX Arecibo SDSS Survey II: The Star Formation Efficiency of Massive Galaxies

    Get PDF
    We use measurements of the HI content, stellar mass and star formation rates in ~190 massive galaxies with stellar masses greater than 10^10 Msun, obtained from the Galex Arecibo SDSS Survey (GASS) described in Paper I (Catinella et al. 2010) to explore the global scaling relations associated with the bin-averaged ratio of the star formation rate over the HI mass, which we call the HI-based star formation efficiency (SFE). Unlike the mean specific star formation rate, which decreases with stellar mass and stellar mass surface density, the star formation efficiency remains relatively constant across the sample with a value close to SFE = 10^-9.5 yr^-1 (or an equivalent gas consumption timescale of ~3 Gyr). Specifically, we find little variation in SFE with stellar mass, stellar mass surface density, NUV-r color and concentration. We interpret these results as an indication that external processes or feedback mechanisms that control the gas supply are important for regulating star formation in massive galaxies. An investigation into the detailed distribution of SFEs reveals that approximately 5% of the sample shows high efficiencies with SFE > 10^-9 yr^-1, and we suggest that this is very likely due to a deficiency of cold gas rather than an excess star formation rate. Conversely, we also find a similar fraction of galaxies that appear to be gas-rich for their given specific star-formation rate, although these galaxies show both a higher than average gas fraction and lower than average specific star formation rate. Both of these populations are plausible candidates for "transition" galaxies, showing potential for a change (either decrease or increase) in their specific star formation rate in the near future. We also find that 36+/-5% of the total HI mass density and 47+/-5% of the total SFR density is found in galaxies with stellar mass greater than 10^10 Msun. [abridged]Comment: 18 pages, 11 figures. Accepted for publication in MNRAS. GASS publications and released data can be found at http://www.mpa-garching.mpg.de/GASS/index.ph

    COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies: II. The non-universality of the Molecular Gas Depletion Timescale

    Full text link
    We study the relation between molecular gas and star formation in a volume-limited sample of 222 galaxies from the COLD GASS survey, with measurements of the CO(1-0) line from the IRAM 30m telescope. The galaxies are at redshifts 0.025<z<0.05 and have stellar masses in the range 10.0<log(M*/Msun)<11.5. The IRAM measurements are complemented by deep Arecibo HI observations and homogeneous SDSS and GALEX photometry. A reference sample that includes both UV and far-IR data is used to calibrate our estimates of star formation rates from the seven optical/UV bands. The mean molecular gas depletion timescale, tdep(H2), for all the galaxies in our sample is 1 Gyr, however tdep(H2) increases by a factor of 6 from a value of ~0.5 Gyr for galaxies with stellar masses of 10^10 Msun to ~3 Gyr for galaxies with masses of a few times 10^11 Msun. In contrast, the atomic gas depletion timescale remains contant at a value of around 3 Gyr. This implies that in high mass galaxies, molecular and atomic gas depletion timescales are comparable, but in low mass galaxies, molecular gas is being consumed much more quickly than atomic gas. The strongest dependences of tdep(H2) are on the stellar mass of the galaxy (parameterized as log tdep(H2)= (0.36+/-0.07)(log M* - 10.70)+(9.03+/-0.99)), and on the specific star formation rate. A single tdep(H2) versus sSFR relation is able to fit both "normal" star-forming galaxies in our COLD GASS sample, as well as more extreme starburst galaxies (LIRGs and ULIRGs), which have tdep(H2) < 10^8 yr. Normal galaxies at z=1-2 are displaced with respect to the local galaxy population in the tdep(H2) versus sSFR plane and have molecular gas depletion times that are a factor of 3-5 times longer at a given value of sSFR due to their significantly larger gas fractions.Comment: Accepted for publication in MNRAS. 19 pages, 11 figure
    corecore