462 research outputs found
Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures
Artificial self-healing superhydrophobic surfaces have become a new research hotspot because of their recoverable non-wetting performance and practical perspective. In this paper, a superhydrophobic surface was fabricated by aerosol-assisted layer-by-layer chemical vapor deposition (AA-LbL-CVD) of epoxy resins and PDMS polymer films. The obtained samples still showed superhydrophobicity even after long-term exposure to different pH solutions and UV light irradiation as well as great mechanical stability against sandpaper abrasion and double-sided tape peeling. Importantly, due to the shape memory effect of the polymer films, the as-prepared samples could recover the previously crushed micro–nano structures upon heat treatment to make the surface superhydrophobic, showing thermo-triggered healing of superhydrophobicity
Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes
Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs) with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current–voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis
Knowledge and attitude on maternal health care among rural-to-urban migrant women in Shanghai, China
<p>Abstract</p> <p>Background</p> <p>In China, with the urbanization, women migrated from rural to big cities presented much higher maternal mortality rates than local residents. Health knowledge is one of the key factors enabling women to be aware of their rights and health status in order to seek appropriate health services. This study aims to assess the knowledge and attitude on maternal health care and the contributing factors to being knowledgeable among rural-to-urban migrant women in Shanghai.</p> <p>Methods</p> <p>A cross-sectional study was conducted in a district center hospital in Shanghai where migrants gathered. Totally 475 rural-to-urban migrant pregnant women were interviewed and completed the self-administered questionnaire after obtaining informed consent.</p> <p>Results</p> <p>The mean score of knowledge on maternal health care was 8.28 out of 12. However, only 36.6% women had attended the required 5 antenatal checks, and 58.3% of the subjects thought financial constrains being the main reason for not attending antenatal care. It was found that higher level of education (OR = 3.3, 95%CI: 1.8–3.8), husbands' Shanghai residence (OR = 4.0, 95%CI: 1.3–12.1) and better family income (OR = 3.3, 95%CI: 1.4–8.2) were associated with better knowledge.</p> <p>Conclusions</p> <p>Rural-to-urban migrant women's unawareness of maternal health service, together with their vulnerable living status, influences their utilization of maternal health care. Tailored maternal health education and accessible services are in demands for this population.</p
Socioeconomic disparities in breast cancer survival: relation to stage at diagnosis, treatment and race
<p>Abstract</p> <p>Background</p> <p>Previous studies have documented lower breast cancer survival among women with lower socioeconomic status (SES) in the United States. In this study, I examined the extent to which socioeconomic disparity in breast cancer survival was explained by stage at diagnosis, treatment, race and rural/urban residence using the Surveillance, Epidemiology, and End Results (SEER) data.</p> <p>Methods</p> <p>Women diagnosed with breast cancer during 1998-2002 in the 13 SEER cancer registry areas were followed-up to the end of 2005. The association between an area-based measure of SES and cause-specific five-year survival was estimated using Cox regression models. Six models were used to assess the extent to which SES differences in survival were explained by clinical and demographical factors. The base model estimated the hazard ratio (HR) by SES only and then additional adjustments were made sequentially for: 1) age and year of diagnosis; 2) stage at diagnosis; 3) first course treatment; 4) race; and 5) rural/urban residence.</p> <p>Results</p> <p>An inverse association was found between SES and risk of dying from breast cancer (p < 0.0001). As area-level SES falls, HR rises (1.00 → 1.05 → 1.23 → 1.31) with the two lowest SES groups having statistically higher HRs. This SES differential completely disappeared after full adjustment for clinical and demographical factors (p = 0.20).</p> <p>Conclusion</p> <p>Stage at diagnosis, first course treatment and race explained most of the socioeconomic disparity in breast cancer survival. Targeted interventions to increase breast cancer screening and treatment coverage in patients with lower SES could reduce much of socioeconomic disparity.</p
Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.
Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method
Differential expression of microRNAs during fiber development between fuzzless- lintless mutant and its wild-type allotetraploid cotton
Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu- 142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology- based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes,
64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface
<p>Abstract</p> <p>Background</p> <p>The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed.</p> <p>Results</p> <p>A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform.</p> <p>Conclusions</p> <p>IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at <url>http://kyc.nenu.edu.cn/IVSPlat/.</url></p
MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development
The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of
54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes
of these miRNAs, which are potentially involved in cotton fiber development. We also investigated
the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield
- …