268 research outputs found

    Accurate reconstruction of insertion-deletion histories by statistical phylogenetics

    Get PDF
    The Multiple Sequence Alignment (MSA) is a computational abstraction that represents a partial summary either of indel history, or of structural similarity. Taking the former view (indel history), it is possible to use formal automata theory to generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff's probability matrices and Felsenstein's pruning algorithm) to arbitrary-length sequences. In this paper, we report results of a simulation-based benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss reconstruction of the evolutionary histories of human protein-coding genes.Comment: 28 pages, 15 figures. arXiv admin note: text overlap with arXiv:1103.434

    Prevalence, genetic diversity and antiretroviral drugs resistance-associated mutations among untreated HIV-1-infected pregnant women in Gabon, central Africa

    Get PDF
    BACKGROUND: In Africa, the wide genetic diversity of HIV has resulted in emergence of new strains, rapid spread of this virus in sub-Saharan populations and therefore spread of the HIV epidemic throughout the continent. METHODS: To determine the prevalence of antibodies to HIV among a high-risk population in Gabon, 1098 and 2916 samples were collected from pregnant women in 2005 and 2008, respectively. HIV genotypes were evaluated in 107 HIV-1-positive samples to determine the circulating subtypes of strains and their resistance to antiretroviral drugs (ARVs). RESULTS: The seroprevalences were 6.3% in 2005 and 6.0% in 2008. The main subtype was recombinant CRF02_AG (46.7%), followed by the subtypes A (19.6%), G (10.3%), F (4.7%), H (1.9%) and D (0.9%) and the complex recombinants CRF06_cpx (1.9%) and CRF11_cpx (1.9%); 12.1% of subtypes could not be characterized. Analysis of ARVs resistance to the protease and reverse transcriptase coding regions showed mutations associated with extensive subtype polymorphism. In the present study, the HIV strains showed reduced susceptibility to ARVs (2.8%), particularly to protease inhibitors (1.9%) and nucleoside reverse transcriptase inhibitors (0.9%). CONCLUSIONS: The evolving genetic diversity of HIV calls for continuous monitoring of its molecular epidemiology in Gabon and in other central African countries

    Two Distinct Triatoma dimidiata (Latreille, 1811) Taxa Are Found in Sympatry in Guatemala and Mexico

    Get PDF
    Approximately 10 million people are infected with Trypanosoma cruzi, the causative agent of Chagas disease, which remains the most serious parasitic disease in the Americas. Most people are infected via triatomine vectors. Transmission has been largely halted in South America in areas with predominantly domestic vectors. However, one of the main Chagas vectors in Mesoamerica, Triatoma dimidiata, poses special challenges to control due to its diversity across its large geographic range (from Mexico into northern South America), and peridomestic and sylvatic populations that repopulate houses following pesticide treatment. Recent evidence suggests T. dimidiata may be a complex of species, perhaps including cryptic species; taxonomic ambiguity which confounds control. The nuclear sequence of the internal transcribed spacer 2 (ITS2) of the ribosomal DNA and the mitochondrial cytochrome b (mt cyt b) gene were used to analyze the taxonomy of T. dimidiata from southern Mexico throughout Central America. ITS2 sequence divides T. dimidiata into four taxa. The first three are found mostly localized to specific geographic regions with some overlap: (1) southern Mexico and Guatemala (Group 2); (2) Guatemala, Honduras, El Salvador, Nicaragua, and Costa Rica (Group 1A); (3) and Panama (Group 1B). We extend ITS2 Group 1A south into Costa Rica, Group 2 into southern Guatemala and show the first information on isolates in Belize, identifying Groups 2 and 3 in that country. The fourth group (Group 3), a potential cryptic species, is dispersed across parts of Mexico, Guatemala, and Belize. We show it exists in sympatry with other groups in Peten, Guatemala, and Yucatan, Mexico. Mitochondrial cyt b data supports this putative cryptic species in sympatry with others. However, unlike the clear distinction of the remaining groups by ITS2, the remaining groups are not separated by mt cyt b. This work contributes to an understanding of the taxonomy and population subdivision of T. dimidiata, essential for designing effective control strategies

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7

    Get PDF
    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival

    FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients.</p> <p>Description</p> <p>We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens <it>Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis</it>. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, <it>C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum </it>and <it>P. brasiliensis </it>thus showing high sensitivity and specificity at a threshold of 0.511. In case of <it>P. brasiliensis </it>the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database.</p> <p>Conclusion</p> <p>FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.</p

    The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa

    Get PDF
    Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease

    Differential Cytokine Gene Expression According to Outcome in a Hamster Model of Leptospirosis

    Get PDF
    Leptospirosis is a widespread bacterial infection that is transmitted by soil or water contaminated by the urine of infected animals, or directly from these animals. It has highly diverse clinical presentations, making its differential diagnosis difficult. Though most cases are minor and self-resolving, there are also severe forms that include a sepsis pattern and multiple organ failure, and have possible fatal outcomes. Predictors of disease evolution and outcome are scarce, yet they would be very valuable to clinicians as well as to better decipher disease pathogenesis. In this study, we used a hamster model of leptospirosis to evaluate if immune genes were differentially expressed between individuals and if their expression levels could help forecast the outcome of the disease. We found that hamsters that later died from leptospirosis had significantly higher expression levels of both pro- and anti-inflammatory mediators compared to survivors. These results suggest that expression levels of these immune effectors might be helpful predictors of outcome in leptospirosis and that septic shock contributes to fatal leptospirosis

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes
    • …
    corecore