116 research outputs found

    Energy Resolution studies for NEXT

    Full text link
    This work aims to present the current state of simulations of electroluminescence (EL) produced in gas-based detectors with special interest for NEXT --- Neutrino Experiment with a Xenon TPC. NEXT is a neutrinoless double beta decay experiment, thus needs outstanding energy resolution which can be achieved by using electroluminescence. The process of light production is reviewed and properties such as EL yield and associated fluctuations, excitation and electroluminescence efficiencies, and energy resolution, are calculated. An EL production region with a 5 mm width gap between two infinite parallel planes is considered, where a uniform electric field is produced. The pressure and temperature considered are 10 bar and 293 K, respectively. The results show that, even for low values of VUV photon detection efficiency, good energy resolution can be achieved: below 0.4 % (FWHM) at Qββ=Q_{\beta\beta}=2.458 MeV

    The NEXT White (NEW) detector

    Get PDF
    Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation

    Radiopurity assessment of the energy readout for the NEXT double beta decay experiment

    Full text link
    [EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4 × 10¿4 counts per keV, kg and year, satisfying the sensitivity requirements of the NEXT experiment.Special thanks are due to LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. We are really grateful to Grzegorz Zuzel for the radon emanation measurements. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROMETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A & and the University of Texas at Arlington.Cebrian, S.; Perez, J.; Bandac, I.; Labarga, L.; Álvarez-Puerta, V.; Azevedo, CDR.; Benlloch-Rodriguez, JM.... (2017). Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. Journal of Instrumentation. 12. https://doi.org/10.1088/1748-0221/12/08/T08003S12Avignone, F. T., Elliott, S. R., & Engel, J. (2008). Double beta decay, Majorana neutrinos, and neutrino mass. Reviews of Modern Physics, 80(2), 481-516. doi:10.1103/revmodphys.80.481Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Renner, J., Farbin, A., Vidal, J. M., Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., … Borges, F. I. G. (2017). Background rejection in NEXT using deep neural networks. Journal of Instrumentation, 12(01), T01004-T01004. doi:10.1088/1748-0221/12/01/t01004Dafni, T., Álvarez, V., Bandac, I., Bettini, A., Borges, F. I. G. M., Camargo, M., … Conde, C. A. N. (2016). Results of the material screening program of the NEXT experiment. Nuclear and Particle Physics Proceedings, 273-275, 2666-2668. doi:10.1016/j.nuclphysbps.2015.10.024Cebrián, S., Pérez, J., Bandac, I., Labarga, L., Álvarez, V., Barrado, A. I., … Cárcel, S. (2015). Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment. Journal of Instrumentation, 10(05), P05006-P05006. doi:10.1088/1748-0221/10/05/p05006Wang, X., Chen, X., Fu, C., Ji, X., Liu, X., Mao, Y., … Zhang, T. (2016). Material screening with HPGe counting station for PandaX experiment. Journal of Instrumentation, 11(12), T12002-T12002. doi:10.1088/1748-0221/11/12/t12002Barrow, P., Baudis, L., Cichon, D., Danisch, M., Franco, D., Kaether, F., … Wulf, J. (2017). Qualification tests of the R11410-21 photomultiplier tubes for the XENON1T detector. Journal of Instrumentation, 12(01), P01024-P01024. doi:10.1088/1748-0221/12/01/p01024Busto, J., Gonin, Y., Hubert, F., Hubert, P., & Vuilleumier, J.-M. (2002). Radioactivity measurements of a large number of adhesives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 492(1-2), 35-42. doi:10.1016/s0168-9002(02)01280-9Nisi, S., Di Vacri, A., Di Vacri, M. L., Stramenga, A., & Laubenstein, M. (2009). Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection. Applied Radiation and Isotopes, 67(5), 828-832. doi:10.1016/j.apradiso.2009.01.02

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Get PDF
    [EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287

    Twenty-six years of HIV science: an overview of anti-HIV drugs metabolism

    Get PDF
    From the identification of HIV as the agent causing AIDS, to the development of effective antiretroviral drugs, the scientific achievements in HIV research over the past twenty-six years have been formidable. Currently, there are twenty-five anti-HIV compounds which have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), cell entry inhibitors or fusion inhibitors (FIs), co-receptor inhibitors (CRIs), and integrase inhibitors (INIs). Metabolism by the host organism is one of the most important determinants of the pharmacokinetic profile of a drug. Formation of active or toxic metabolites will also have an impact on the pharmacological and toxicological outcomes. Therefore, it is widely recognized that metabolism studies of a new chemical entity need to be addressed early in the drug discovery process. This paper describes an overview of the metabolism of currently available anti-HIV drugs.Da identificação do HIV como o agente causador da AIDS, ao desenvolvimento de fármacos antirretrovirais eficazes, os avanços científicos na pesquisa sobre o HIV nos últimos vinte e seis anos foram marcantes. Atualmente, existem vinte e cinco fármacos anti-HIV formalmente aprovados pelo FDA para utilização clínica no tratamento da AIDS. Estes compostos são divididos em seis classes: inibidores nucleosídeos de transcriptase reversa (INTR), inibidores nucleotídeos de transcriptase reversa (INtTR), inibidores não-nucleosídeos de transcriptase reversa (INNTR), inibidores de protease (IP), inibidores da entrada celular ou inibidores de fusão (IF), inibidores de co-receptores (ICR) e inibidores de integrase (INI). O metabolismo consiste em um dos maiores determinantes do perfil farmacocinético de um fármaco. A formação de metabólitos ativos ou tóxicos terá impacto nas respostas farmacológicas ou toxicológicas do fármaco. Portanto, é amplamente reconhecido que estudos do metabolismo de uma nova entidade química devem ser realizados durante as fases iniciais do processo de desenvolvimento de fármacos. Este artigo descreve uma abordagem do metabolismo dos fármacos anti-HIV atualmente disponíveis na terapêutica

    A Compact Dication Source for Ba2+^{2+} Tagging and Heavy Metal Ion Sensor Development

    Full text link
    We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cobalt samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+\mathrm{Ba^{2+}} ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+^{2+} and Cd2+^{2+} also demonstrated for this purpose

    The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic carotid plaques predicts the occurrence of stroke

    Get PDF
    Objective: To test the hypothesis that the size of a juxtaluminal black (hypoechoic) area (JBA) in ultrasound images of asymptomatic carotid artery plaques predicts future ipsilateral ischemic stroke. Methods: A JBA was defined as an area of pixels with a grayscale value <25 adjacent to the lumen without a visible echogenic cap after image normalization. The size of a JBA was measured in the carotid plaque images of 1121 patients with asymptomatic carotid stenosis 50% to 99% in relation to the bulb (Asymptomatic Carotid Stenosis and Risk of Stroke study); the patients were followed for up to 8 years. Results: The JBA had a linear association with future stroke rate. The area under the receiver-operating characteristic curve was 0.816. Using Kaplan-Meier curves, the mean annual stroke rate was 0.4% in 706 patients with a JBA <4 mm 2, 1.4% in 171 patients with a JBA 4 to 8 mm2, 3.2% in 46 patients with a JBA 8 to 10 mm2, and 5% in 198 patients with a JBA >10 mm2 (P <.001). In a Cox model with ipsilateral ischemic events (amaurosis fugax, transient ischemic attack [TIA], or stroke) as the dependent variable, the JBA (<4 mm2, 4-8 mm2, >8 mm2) was still significant after adjusting for other plaque features known to be associated with increased risk, including stenosis, grayscale median, presence of discrete white areas without acoustic shadowing indicating neovascularization, plaque area, and history of contralateral TIA or stroke. Plaque area and grayscale median were not significant. Using the significant variables (stenosis, discrete white areas without acoustic shadowing, JBA, and history of contralateral TIA or stroke), this model predicted the annual risk of stroke for each patient (range, 0.1%-10.0%). The average annual stroke risk was <1% in 734 patients, 1% to 1.9% in 94 patients, 2% to 3.9% in 134 patients, 4% to 5.9% in 125 patients, and 6% to 10% in 34 patients. Conclusions: The size of a JBA is linearly related to the risk of stroke and can be used in risk stratification models. These findings need to be confirmed in future prospective studies or in the medical arm of randomized controlled studies in the presence of optimal medical therapy. In the meantime, the JBA may be used to select asymptomatic patients at high stroke risk for carotid endarterectomy and spare patients at low risk from an unnecessary operation

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore