645 research outputs found

    Direct observation and imaging of a spin-wave soliton with p−p-like symmetry

    Get PDF
    The prediction and realization of magnetic excitations driven by electrical currents via the spin transfer torque effect, enables novel magnetic nano-devices where spin-waves can be used to process and store information. The functional control of such devices relies on understanding the properties of non-linear spin-wave excitations. It has been demonstrated that spin waves can show both an itinerant character, but also appear as localized solitons. So far, it was assumed that localized solitons have essentially cylindrical, s−s-like symmetry. Using a newly developed high-sensitivity time-resolved magnetic x-ray microscopy, we instead observe the emergence of a novel localized soliton excitation with a nodal line, i.e. with p−p-like symmetry. Micromagnetic simulations identify the physical mechanism that controls the transition from s−s- to p−p-like solitons. Our results suggest a potential new pathway to design artificial atoms with tunable dynamical states using nanoscale magnetic devices

    Livestock grazing impacts components of the breeding productivity of a common upland insectivorous passerine:Results from a long-term experiment

    Get PDF
    The intensity of pastoral management in areas of High Nature Value farming is declining in some regions of Europe but increasing in others. This affects open habitats of conservation concern, such as the British uplands, where bird species that benefit from low-intensity grazing may be most sensitive to such polarization. While experimental manipulations of livestock grazing intensities have improved our understanding of upland breeding bird responses in the short term, none have examined the long-term impacts of altered management on reproductive success. Using a replicated landscape-scale experiment that started in 2003, we investigated the effects of four grazing treatments (intensive sheep; low-intensity sheep; low-intensity mixed sheep and cattle; and no grazing) on the breeding productivity of meadow pipits Anthus pratensis, the most common upland passerine. Surveys were carried out systematically during early (2003 and 2004) and late (2015 and 2016) sampling periods of the experiment to compare the short- and long-term effects of grazing treatments on breeding density and productivity of pipits specifically, but also on the overall bird community. Pipit breeding density was lowest under low-intensity sheep grazing while the highest egg-stage nest survival was observed in the same treatment, although no significant treatment effects were detected on overall nest survival or fledgling output. There were no significant differences in treatment effects between the sampling periods on any breeding variable, but overall nest survival was lower in the later sampling period across all treatments. Breeding bird species richness differed between treatments in the later sampling period, with highest species richness in the ungrazed treatment. Synthesis and applications. Livestock grazing management can have different outcomes for different upland birds. Our results showed that, with time, meadow pipit breeding productivity tended to be higher when sheep grazing intensity was reduced and/or mixed with cattle, and lower when livestock were removed, but not significantly so. Removal of grazing, however, can significantly increase bird species richness. The long-term experiment showed an overall decline in fledglings regardless of grazing treatments, potentially a result of increased predator numbers harboured by nearby developing woodland, highlighting the importance of considering wider landscape processes in grazing management decisions.</p

    Earthing the Anthropos? From ‘socializing the Anthropocene’ to geologizing the social

    Get PDF
    Responding to claims of Anthropocene geoscience that humans are now geological agents, social scientists are calling for renewed attention to the social, cultural, political and historical differentiation of the Anthropos. But does this leave critical social thought’s own key concepts and categories unperturbed by the Anthropocene provocation to think through dynamic earth processes? Can we ‘socialize the Anthropocene’ without also opening ‘the social’ to climate, geology and earth system change? Revisiting the earth science behind the Anthropocene thesis and drawing on social research that is using climatology and earth systems thinking to help understand socio-historical change, this article explores some of the possibilities for ‘geologizing’ social thought. While critical social thought’s attention to justice and exclusion remains vital, it suggests that responding to Anthropocene conditions also calls for a kind of ‘geo-social’ thinking that relates human diversity and social difference to the potentiality and multiplicity of the earth itself

    Large emissions from floodplain trees close the Amazon methane budget

    Get PDF
    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (ÎŽ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources

    Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that real-time three-dimensional (3D) echocardiography (RT3DE) gives more accurate and reproducible left ventricular (LV) volume and ejection fraction (EF) measurements than traditional two-dimensional methods. A new semi-automated tool (4DLVQ) for volume measurements in RT3DE has been developed. We sought to evaluate the accuracy and repeatability of this method compared to a 3D echo standard.</p> <p>Methods</p> <p>LV end-diastolic volumes (EDV), end-systolic volumes (ESV), and EF measured using 4DLVQ were compared with a commercially available semi-automated analysis tool (TomTec 4D LV-Analysis ver. 2.2) in 35 patients. Repeated measurements were performed to investigate inter- and intra-observer variability.</p> <p>Results</p> <p>Average analysis time of the new tool was 141s, significantly shorter than 261s using TomTec (<it>p </it>< 0.001). Bland Altman analysis revealed high agreement of measured EDV, ESV, and EF compared to TomTec (<it>p </it>= <it>NS</it>), with bias and 95% limits of agreement of 2.1 ± 21 ml, -0.88 ± 17 ml, and 1.6 ± 11% for EDV, ESV, and EF respectively. Intra-observer variability of 4DLVQ vs. TomTec was 7.5 ± 6.2 ml vs. 7.7 ± 7.3 ml for EDV, 5.5 ± 5.6 ml vs. 5.0 ± 5.9 ml for ESV, and 3.0 ± 2.7% vs. 2.1 ± 2.0% for EF (<it>p </it>= <it>NS</it>). The inter-observer variability of 4DLVQ vs. TomTec was 9.0 ± 5.9 ml vs. 17 ± 6.3 ml for EDV (<it>p </it>< 0.05), 5.0 ± 3.6 ml vs. 12 ± 7.7 ml for ESV (<it>p </it>< 0.05), and 2.7 ± 2.8% vs. 3.0 ± 2.1% for EF (<it>p </it>= <it>NS</it>).</p> <p>Conclusion</p> <p>In conclusion, the new analysis tool gives rapid and reproducible measurements of LV volumes and EF, with good agreement compared to another RT3DE volume quantification tool.</p

    Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial.

    Get PDF
    BACKGROUND: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. METHODS: Serial blood, serum and peripheral blood mononuclear cell (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. RESULTS: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later.  NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and ÎČ7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. CONCLUSIONS: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis

    Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: Source apportionment and transport mechanisms

    Get PDF
    Atmospheric aerosols in the PM10 and PM1 fractions have been sampled at the Global Atmospheric Watch station Mount Cimone, Italy (2165 m above mean sea level) for 3 months during summer 2004, and simultaneous size distributions have been derived by means of an optical particle counter. Samples have been analyzed by X-ray fluorescence, ion chromatography, and thermal-optical methodology in order to quantify their elemental, ionic, and carbonaceous constituents. The concentration of PM10 was 16.1 \ub1 9.8 mg m3 (average and standard deviation). Source apportionment allowed us to identify, quantify and characterize the following aerosol classes: anthropogenic pollution (10 mg m3), mineral dust (4 mg m3), and sea salt (0.2 mg m3). Pollution has been further split into ammonium sulfate (44%), organic matter (42%), and other compounds (14%). The nitrate/sulfate ratio in the polluted aerosol was 0.1. Fine particles have been completely related to the polluted aerosol component, and they represented 70% in weight of pollution. Coarse particles characterized the dust and salt components, and crustal oxides have been found to be the largest responsible for the aerosol concentration variations that occurred during the campaign. Nitrate has also been found in the coarse particles, representing 10% of mineral dust. The analysis of the transport mechanisms responsible for aerosol fluctuations permitted us to identify the origin of the major aerosol components: Pollution has been ascribed to regional transport driven by boundary layer meteorology, whereas mineral dust has been related to long-range transport events originating in the Sahara and Sahel. A particularly significant Saharan episode has been identified on 10 August 2004 (PM10 daily concentration, 69.9 mg m3). Average elemental ratios for the African dust events were as follows: Si/Al = 2.31, Fe/Ca = 0.94, Ca/Al = 0.90, K/Ca = 0.44, Ti/Ca = 0.11, and Ti/Fe = 0.12
    • 

    corecore