
 
 

University of Birmingham

Large emissions from floodplain trees close the
Amazon methane budget
Pangala, S.R.; Enrich-Prast, A.; Basso, L.S.; Peixoto, R.B.; Bastviken, D.; Hornibrook, E.R.C.;
Gatti, L.V.; Marotta, H.; Calazans, L.S.B.; Sakuragui, C.M.; Bastos, W.R.; Malm, O.; Gloor, E.;
Miller, J.B.; Gauci, V.
DOI:
10.1038/nature24639

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Pangala, SR, Enrich-Prast, A, Basso, LS, Peixoto, RB, Bastviken, D, Hornibrook, ERC, Gatti, LV, Marotta, H,
Calazans, LSB, Sakuragui, CM, Bastos, WR, Malm, O, Gloor, E, Miller, JB & Gauci, V 2017, 'Large emissions
from floodplain trees close the Amazon methane budget', Nature, vol. 552, pp. 230–234.
https://doi.org/10.1038/nature24639

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 08/08/2019

This document is the Author Accepted Manuscript version of a published work which appears in its final form in Nature, copyright © 2017
Macmillan Publishers Limited, part of Springer Nature. The final Version of Record can be found at:

https://doi.org/10.1038/nature24639

This document is subject to subject to Springer Nature re-use terms.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/222829623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/nature24639
https://doi.org/10.1038/nature24639
https://research.birmingham.ac.uk/portal/en/publications/large-emissions-from-floodplain-trees-close-the-amazon-methane-budget(bf19fae3-2594-4ac8-94eb-e7b59044fb0f).html


 

 

1 

 

Large emissions from floodplain trees close the Amazon methane budget 1 

Sunitha R. Pangala1*, Alex Enrich-Prast2,3, Luana S. Basso4, Roberta Bittencourt Peixoto3, 2 

David Bastviken2, Edward Hornibrook5,6, Luciana V. Gatti4,7, Humberto Marotta Ribeiro8, 9, 3 

Luana Silva Braucks Calazans3, Cassia Mônica Sakuragui3, Wanderley Rodrigues Bastos10, 4 

Olaf Malm11, Emanuel Gloor12, John Miller13, Vincent Gauci1* 
5 

1 School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, 6 

Milton Keynes, MK7 6AA, UK.   7 

2 Department of Thematic Studies – Environmental Change, Linköping University, Linkoping 8 

SE-581 83, Sweden. 9 

3 Department of Botany, Institute of Biology, University Federal of Rio de Janeiro, Rio de 10 

Janeiro, Brazil. 11 

4 Instituto de Pesquisas Energéticas e Nucleares (IPEN)–Comissao Nacional de Energia 12 

Nuclear (CNEN)–Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, 13 

Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil. 14 

5 School of Earth Sciences, The University of Bristol, Wills Memorial Building, Queen’s Road, 15 

Bristol, BS8 1RJ, UK 16 

6 Earth, Environmental and Geographic Sciences, Irving K. Barber School of Arts and 17 

Sciences, The University of British Columbia, 1177 Research Road, Kelowna, BC, V1V 1V7, 18 

Canada. 19 

7 National Institute for Space Research (INPE), Center for Earth System Science (CCST), 20 

Greenhouse Gas Laboratory (LaGEE), Av. Dos Astronautas, 1758, Sao Jose dos Campos, CEP 21 

12227-010, Brazil. 22 

8 Ecosystems and Global Change Laboratory (LEMG-UFF) / International Laboratory of Global 23 

Change (LINCGlobal). Biomass and Water Management Research Center (NAB-UFF). 24 

Graduated Program in Geosciences (Environmental Geochemistry). Universidade Federal 25 

Fluminense (UFF), Av. Edmundo March, s/nº – Zip Code: 24210-310, Niteroi/RJ- Brazil. 26 

9 Sedimentary and Environmental Processes Laboratory (LAPSA-UFF). Department of 27 

Geography. Graduated Program in Geography. Universidade Federal Fluminense (UFF), Av. 28 

Gal. Milton Tavares de Souza, s/nº - Zip Code: 24210-346, Niteroi/RJ- Brazil. 29 

10 Environmental Biogeochemistry Laboratory, Federal University of Rondônia, Rondônia, 30 

Brazil. 31 



 

 

2 

 

11 Radioisotopes Laboratory, Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), 32 

Rio de Janeiro, Brazil. 33 

12 School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK. 34 

13 Global Monitoring Division, Earth System Research Laboratory, National Oceanic and 35 

Atmospheric Administration, 325 Broadway, Boulder, CO 80305, USA. 36 

*Authors for correspondence: Sunitha.Pangala@open.ac.uk, Vincent.Gauci@open.ac.uk. 37 

Keywords: tropical wetlands, methane, tree stem methane emissions, Amazon wetlands. 38 

Wetlands are the largest global source of atmospheric methane (CH4)
1, a potent greenhouse gas. 39 

However, methane emission inventories from the Amazon floodplain2,3, the largest natural 40 

geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 41 

determined via remote sensing and inversion modelling4,5, pointing to a major gap in our 42 

understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 43 

fluxes from the stems of 2357 individual Amazonian floodplain trees from 13 locations across the 44 

central Amazon basin. We find that egress of soil gas through wetland trees is the dominant 45 

source of regional CH4 emissions. Amazon tree stem fluxes were up to 150-200 times larger than 46 

emissions reported for temperate wet forests6 and tropical peat swamp forests7, representing the 47 

largest non-ebullitive wetland fluxes observed. Tree emissions had an average 13C-CH4 value of -48 

66.2±6.4‰ consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 49 

to 21.2 ± 2.5 Tg CH4 yr-1, in addition to 20.5±5.3 Tg CH4 yr-1 emitted regionally from other sources. 50 

Furthermore, we provide a top-down regional estimate of CH4 emissions of 42.7±5.6 Tg CH4 yr-1 for 51 

the Amazon basin based on regular vertical lower troposphere CH4 profiles covering the period 52 

2010-13. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, 53 

indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can 54 

account for the missing emission source required to close the Amazon CH4 budget. 55 

Wetlands are the single largest global source of atmospheric methane (CH4), emitting an estimated 56 

160 to 210 Tg of CH4 each year to the troposphere1. Wetlands are concentrated globally in two 57 

broad latitudinal bands; one rich in peatlands spanning the boreal and subarctic zones and a second 58 

in the tropics and sub-tropics containing vast swamps and seasonally inundated floodplains1. Low 59 

latitude wetlands are notably prolific sources of CH4 because of their substantial net primary 60 

productivity (NPP) and high seasonal temperatures2.  However, relative to northern wetlands, flux 61 

measurements from Amazon floodplain ecosystems are comparatively sparse and have focussed 62 

mainly on soil and water surfaces, and gas exchange mediated by aquatic macrophytes8,9.  63 

Integration of these emission sources across the lowland Amazon basin based upon remotely sensed 64 

wetland distributions, yields an estimated flux of 26 to 29 Tg CH4 yr-1 2,3.  In contrast, estimates 65 

derived from atmospheric transport inversion modelling using in-situ CH4 concentrations measured 66 

at surface sites remote from Amazonia and satellite greenhouse gas measurements (the so-called 67 

‘top-down’ approaches) are considerably greater at 44 to 52 Tg yr-1 4,10 and consistent with estimates 68 

of CH4 flux determined from modelling heterotrophic anaerobic respiration of regional NPP10. 69 

Results of these global inversions should be treated with some caution. This is because the surface 70 

mailto:Sunitha.Pangala@open.ac.uk
mailto:Vincent.Gauci@open.ac.uk


 

 

3 

 

air sampling sites are minimally sensitive  to the Amazon and the number of total column CH4 71 

estimates from space likely suffer from both temporal sampling bias (data are concentrated in the 72 

early dry season between seasons of smoke and clouds) and measurement biases11. In contrast in-73 

situ measured vertical profile data capture directly the surface flux signals and discern the boundary 74 

layer signal from the free troposphere signal12. New measurements are therefore required to resolve 75 

the discrepancy between bottom-up inventories and top-down estimates which cannot be 76 

reconciled via contributions from other currently reported CH4 sources from the Amazon region e.g., 77 

biomass burning, termites and ruminants5,13 nor UV-induced aerobic emissions from plants14 and 78 

tank bromeliads15.  Further, the regional stable carbon isotope composition (i.e., 13C/12C ratio 79 

expressed as a 13C value) of atmospheric CH4 indicates unequivocally that the ‘missing’ Amazonian 80 

CH4 source is derived from microbial metabolism of C3 photosynthate16.  Consequently, the most 81 

likely scenario is that surface-based flux measurements have either missed intense but perhaps 82 

spatially disaggregated CH4 emission sources or they have overlooked an important pathway for 83 

egress of soil-produced CH4.  84 

Trees subjected to permanent or periodic inundation develop adaptive features such as enlarged 85 

lenticels and hollow aerenchyma tissue to enhance oxygenation of their root systems17,18.  The 86 

internal conduits that enable air to move downwards also facilitate upward escape of soil CH4 to the 87 

atmosphere7,17,18.  Tree-mediated gas emission has been shown to dominate ecosystem CH4 88 

emissions in tropical peat swamp forest where aerobic CH4-oxidizing bacteria form a highly effective 89 

barrier to diffusive flux through peat soil7.  Total CH4 emission rates are relatively modest in Borneo 90 

peat swamps1,7; however, the capacity for trees to emit CH4 at higher rates is determined largely by 91 

rates of soil CH4 production and supply18. Tree-mediated transport of CH4 has not been investigated 92 

to date in the seasonally flooded, dense forests of the Amazon floodplains although ongoing efforts 93 

continue to extend the database of flux measurements quantifying CH4 emission from soil, emergent 94 

macrophytes8,9, and open water8,19,20. 95 

We measured CH4 fluxes at 13 floodplain locations in the central Amazon River basin (Fig.1a), 96 

quantifying emissions from all known transport pathways, including forested floodplain soil, aquatic 97 

surfaces, and floating herbaceous macrophytes as well as stem and leaf surfaces of mature and 98 

young trees. At each floodplain site, a 50 × 80 m plot was established that encompassed four 99 

transects in which water table depth varied from ~1 m below the soil surface to ~10 m above the soil 100 

surface.  Nine of the 12 sites sampled in 2014 included an area of exposed floodplain soil in which 101 

large hummocks occupied <13.5% of the total surface area. The relative contribution of emissions 102 

from individual pathways was determined relative to total ecosystem CH4 flux (Table 1).  Methane 103 

emissions from tree stems and aquatic surfaces were the dominant egress pathways (Fig. 1; Table 1). 104 

All trees studied released substantial quantities of CH4.  Emission rates for mature and young trees 105 

ranged from 0.33 to 337 mg m-2 stem h-1 and 0.39 to 581 mg m-2 stem h-1, respectively. Methane flux 106 

from tree stems exceeded CH4 emissions from all other pathways in the study plots (Fig. 1b-f; Table 107 

1). Moreover, CH4 emission rates from Amazon floodplain trees were ~150 times larger than stem 108 

flux rates reported for southeast Asian peat swamp forests7 where less CH4 is released owing to low 109 

soil pH, high CH4 oxidation rates and recalcitrant carbon impeding rates of methanogenesis. Fewer 110 

than 4% of wood cores extracted from tree stems at 20 and 130 cm above the soil or water surface 111 
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displayed capacity for CH4 production (Table 2) and stem cores from sampled trees displayed no 112 

visual sign of wood rot. These observations suggest that CH4 emitted from the tree stems originated 113 

in the floodplain soil.  114 

The 13C values of tree-mediated CH4 flux ranged from -76.3 to -59.1‰, averaging -66.2 ± 6.4‰ (n = 115 

18; Table 3) consistent with the stable carbon isotope composition of CH4 in soil water (range -70.8 116 

to -54.5‰; Table 3) in the study plots.  The 13C values are typical for wetland CH4 albeit more 117 

negative than values generally attributed to tropical wetlands21. 118 

Young tree leaves emitted small but significant quantities of CH4 (Fig.1b-f; Table 1). Methane 119 

emission from mature leaves, if present, was below the instrument detection limit of c. 2 ppbv. 120 

Similar to temperate6 and other tropical7 trees, stem CH4 flux rates decreased either linearly or 121 

exponentially with increasing stem height sampling position.  122 

We pursued two approaches to scaling fluxes to the entire Amazon basin. Firstly, the measured CH4 123 

emission rates and areas of emission surfaces (Supplementary Table 3) were used to estimate the 124 

contribution of each transport pathway to total ecosystem CH4 flux estimated for each 50 × 80 m 125 

study plot and then averaged for the river type. Emissions from tree stems and leaves collectively 126 

were the dominant source of CH4 evasion from Amazon floodplain soil (44 to 65 %; Table 1). The 127 

contribution from aquatic surfaces was the second most significant source, accounting for 27 to 41% 128 

of total CH4 flux. Soil surfaces, which were corrected for tree basal areas, emitted 2.5 to 15.7% of 129 

ecosystem CH4 flux (Table 1). Conservative scaling of stem emission (considering only 0-140 cm of 130 

tree stem emissions) to the central Amazon basin22 yields an annual source strength of 15.1 ± 1.8 Tg 131 

CH4 yr-1 for tree-mediated flux (Table 4). Inclusion of tree emissions to 2.3-5 m stem height, 132 

estimated using the relationship between stem CH4 flux and stem height intervals, yields an annual 133 

source strength of 21.2 ± 2.5 Tg CH4 yr-1, which is equivalent to current bottom-up inventories of 134 

total CH4 emissions for Amazonian wetlands (26.2 ± 9.8 Tg yr-12,3; Table 4) that exclude tree 135 

emissions. Further, while recent evidence suggests the potential for non-wetland trees to emit CH4
23-136 

25, no robust measurements of upland tree emission have been reported in the region and those few 137 

flux measurements reported elsewhere have been several orders of magnitude smaller than our 138 

wetland tree observations, so in keeping with our conservative approach to regional upscaling we 139 

have excluded upland tree fluxes pending further evidence.   140 

Secondly, during the period 2010 to 2013 we also established top-down regional estimates of CH4 141 

emissions based upon novel regularly measured in-situ atmospheric CH4 profiles from the surface to 142 

4.5 km height above sea level using an air-column budgeting approach. Profiles were measured at 143 

four locations in the Amazon basin (Alta Floresta (ALF), Rio Branco (RBA), Santarém (SAN) and 144 

Tabatinga (TAB)).  Flux estimates determined using this approach integrate CH4 emissions from 145 

regions upwind of the sampling sites, covering an increasing area the farther west a site is located in 146 

the basin. Based on the envelope of back-trajectory ensembles we estimate the regions of influence 147 

to be 2.53 million km2 for TAB, 3.67 million km2 for RBA, 0.59 million km2 for SAN and 1.31 million 148 

km2 for ALF. The total Amazon basin area is 6.7 million km2. The upwind regions of all four sites 149 

during all four years were a significant source of CH4 to the atmosphere with emission rates varying 150 

from 11.4 ± 4.5 to 15.9 ± 2.2 mg CH4 m
-2 day-1 at ALF, 11.4 ± 1.6 to 15.4 ± 3.2 mg CH4 m

-2 day-1 at RBA, 151 
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11.1 ± 4.7 to 18.9 ± 3.2 mg CH4 m
-2 day-1 at TAB and 48.4 ± 7.6 to 60.9 ± 6.3 mg CH4 m

-2 day-1 at SAN.  152 

We observed substantially larger mean annual fluxes at SAN relative to the other three sites, which 153 

is consistent with spatial differences observed in CH4 emission rates within our 13 floodplain study 154 

plots. The SAN area of influence includes the Tapajós River where we measured the largest CH4 155 

fluxes from trees and other sources among the 13 floodplain study plots (T10, T11, T12; Fig. 1a).   156 

Extrapolation of inversion results to the whole of the Amazon basin using an area-weighted average 157 

( with , ) yields a mean total CH4 flux of 158 

42.7 ± 5.6 Tg CH4 yr-1 for the four-year period, which is the equivalent of ~8% of global CH4 159 

emissions. The uncertainty of 5.6 Tg CH4 yr-1 is the standard deviation (1) of the four annual 160 

emission estimates. In an earlier study26, we used the 2010-2011 vertical profile data and a simple 161 

Bayesian synthesis inversion approach constrained by both prior flux estimates and atmospheric 162 

profile data to obtain a net flux estimate of 37 ± 5.9 Tg yr-1. For all inversions and periods considered, 163 

the estimated fluxes exceeded the prior flux estimates with wetland prior fluxes based either on the 164 

JULES land surface model or the model of Bloom et al.2. While these earlier estimates are somewhat 165 

smaller than the estimates reported here, this is expected because the presence of the prior flux 166 

estimates biases the estimates low. The combinations of floodplain tree emissions (15.1 ± 1.8 - 21.2 167 

± 2.5 Tg CH4 yr-1) and CH4 emission from other transport pathways (20.5 ± 5.3 Tg yr-1) yields a total 168 

that agrees well with our estimate of regional CH4 emissions determined from inversion modelling of 169 

atmosphere CH4 profiles.  Thus, inclusion of tree-mediated CH4 fluxes reconciles current disparities 170 

between ‘bottom-up’ and ‘top down’ approaches effectively closing the Amazonian CH4 budget. 171 

Our results demonstrate that exceptionally large emissions from Amazon floodplain trees alone are 172 

equivalent in size to the entire Arctic CH4 source and account for ~15% of the global wetland CH4 173 

source. Together with already understood emission pathways, our findings demonstrate that the 174 

Amazon, in contributing up to a third of the global wetland CH4 source, is a far larger source of CH4 175 

than inventories previously acknowledged and is therefore likely to exert greater influence over 176 

global atmospheric CH4 concentration variability than was previously thought.  Given this increased 177 

influence over atmospheric CH4 there is a need to quantify the controls on soil CH4 production and 178 

tree emission variability within the biodiverse, hydrologically dynamic and geochemically 179 

heterogeneous Amazon basin while re-appraising representation of CH4 transport mechanisms in 180 

process-based wetland models if global models are to possess the capacity to accurately predict 181 

changes in CH4 flux resulting from climate change or other human perturbations such as the planned 182 

construction of hydroelectric dams across the basin27. Finally, given that tropical forested wetlands 183 

spanning the Congo and southeast Asia experience either seasonal or permanent inundation, 184 

wetland-adapted trees may be responsible for a similar proportion of CH4 flux in those regions, 185 

pointing to potential gross underestimates in bottom-up CH4 inventories across globally important 186 

regions using current approaches that exclude trees.  187 

F = F ×Abasin F = (
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Ann=1
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Table 1: Methane fluxes and estimated ecosystem contributions from five major rivers in the central 275 
Amazon basin.  276 
Table 2:  Methane production potentials measured from the wood cores extracted. 277 

Table 3: 13C values of tree CH4 flux and porewater CH4. 278 
Table 4: Estimated annual CH4 emissions from the Amazon basin using bottom up and top down methods.  279 

Main figure legends 280 
Figure 1: Sampling site locations and CH4 flux distributions. a) Map showing the location of the 13 281 

sampling sites within the central Amazon River basin, Brazil. (×) and (●) represent the sites sampled 282 

in 2013 and 2014, respectively. Sampling sites are labelled: S1, S2 (River Solimões); N3, N4, N5, N6 283 

(River Negro); A7, A8, A9 (River Amazon); T10, T11, T12 (River Tapajós) and M13 (River Madeira). 284 

Box and whisker plots showing the distribution of CH4 fluxes measured from all CH4 emitting 285 

pathways from river b) Negro, c) Madeira, d) Amazon, e) Solimões and f) Tapajós. Box plots 286 

represents CH4 fluxes measured from mature tree stem surfaces (M.stems), young tree stem 287 

surfaces (Y.stems), young tree leaf surfaces × 10-2 (Y.leaves), emergent macrophytes (MAC), aquatic 288 

surfaces where the water table was 0-10 m above the soil surface and soil surfaces where the water 289 

table was 0-1 m below the soil surfaces. Stem CH4 fluxes for mature trees were measured at four 30 290 

cm intervals between 20 and 140 cm and young trees at 10 cm intervals between 15 and 135 cm. 291 

The box plot represents the averaged flux value between the 20 to 140 cm stem portion for mature 292 

trees and 15 to 135 cm for young trees. CH4 fluxes (mg m-2 hr-1) are expressed per unit area of the 293 

CH4 emitting surface measured.  294 



 

 

9 

 

Methods 295 

Ecosystem scale measurements  296 

Thirteen temporary plots (50 × 80 m) were set up in the floodplains (várzeas and Igapó) of the five 297 

major rivers of the central Amazon basin, Brazil. During 2013, sampling was conducted at the Cuniã 298 

ecological field station (Rondônia) a floodplain fed by the River Madeira (Fig. 1). During 2014, all 299 

sampling locations (n = 12) were within the 1.77 million km2 reference quadrant of the central 300 

Amazon basin previously characterised in detail with Synthetic Aperture Radar (SAR) imagery3,28. The 301 

12 sampling locations consisted of four sampling locations in River Negro (black water), two in River 302 

Solimões (white water), three in River Amazon (white water), and three in River Tapajós (clear 303 

water). Methane sampling was conducted in the flooded forests (Supplementary Table 1) and 304 

sample locations S1, S2, A7, A8 and M13 were comprised of várzeas with white waters, neutral pH, 305 

and high sediment load from the Andean and pre-Andean regions. Sample plots N3, N4, N5, N6, T10, 306 

T11 and T12 consisted of igapós with black water (N3, N4, N5 and N6) or clear water (T10, T11 and 307 

T12), having a pH ranging from 4 to 5.5 and 4.4 to 7, respectively.  Our measurements across the 13 308 

sites ensured that any differences between the distinct water types (clear, white and black) 309 

characteristic of the Amazon River and attributed mostly to its channel morphology and geology 310 

were captured. 311 

Within each study plot, stem CH4 flux from mature trees (diameter at breast height; DBH = 6-74 cm; 312 

tree height = 5-22 m; n = 1759 trees; Supplementary Table 2) was measured at 30 cm intervals 313 

between 20 and 140 cm height and for young trees (tree height ≤ 5 m; DBH ≤ 6 cm; n = 598 trees) at 314 

10 cm intervals between 15 and 135 cm above the soil/water surface. CH4 emissions from young and 315 

mature trees were measured across the plot, split into four transects within which the water table 316 

depths ranged from wet (0-10 m above the soil surface) to dry (0 – 1 m below the soil surface) 317 

conditions. Methane emissions from stems of mature and young trees were measured using static 318 

chambers as described by Pangala et al.7,18 and Siegenthaler et al.29. Methane emissions (n = 207) 319 

were measured from aquatic surfaces within each plot, inside the flooded forests using floating 320 

chambers (Supplementary Figure 1) deployed for 24 hours as described by Bastviken et al.30. Floating 321 

chambers were deployed in four transects within each plot, where the water table depths ranged 322 

from 0 to 10 m above the soil surface. These transects also extended into the raised hummocks 323 

where the water-table was below the soil surface and in these areas soil CH4 fluxes (n = 380) were 324 

measured using cylindrical static chambers (30 × 30 cm; diameter × height; Supplementary Figure 1). 325 

‘Aquatic surfaces’ refers to the water body within the flooded forest and does not include ‘open 326 

waters’ outside the flooded forest with no vegetation. 327 

Floating chambers (1 × 1 × 1.5 m; height × width × length) were used to measure CH4 emissions from 328 

emergent floating macrophytes (n = 80). The chambers were constructed of gas-impermeable 329 

fluorinated ethylene propylene film (Adtech Ltd., Gloucestershire, UK) wrapped around a pipe 330 

frame.  Floats were attached to the bottom of the frame. Emergent macrophytes were absent in 331 

study locations in the River Negro catchment probably due to low nutrient concentrations in the 332 

acidic black waters. Due to receding water table levels, floating macrophytes were absent in River 333 

Madeira. Therefore, CH4 fluxes from emergent floating macrophytes were measured only in Rivers 334 
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Solimões, Amazon and Tapajós. Rooted macrophytes were absent in all sampling locations during 335 

our study period.  336 

Leaf emissions were measured from leaf surfaces of young trees (n = 260 trees) and mature trees 337 

(when accessible; n = 180 trees) using static chambers as described by Pangala et al.18.  The 338 

chambers, which enclosed four different branches per tree, were deployed for 10 minutes during 339 

each flux measurement. In the 2014 campaign, we measured CH4 emissions from tree stem and leaf 340 

surfaces in the flooded forest and emergent macrophytes in real-time by cavity-ring down laser 341 

spectroscopy as described in Pangala et al.18.  However, on days with heavy rainfall, gas sampling 342 

and analysis were conducted as described in Pangala et al.7 i.e. collection via syringes and later 343 

analysis for CH4 content. Methane emissions from tree stems and leaf surfaces from trees with 344 

water table below the soil surface in the 2014 campaign and all measurements in the 2013 345 

campaigns were performed as described in Siegenthaler et al.29  and  Pangala et al.7, respectively. 346 

Gas samples from chambers enclosing soil and aquatic surfaces were extracted using a syringe and 347 

then transferred to glass vials for CH4 analysis by modified cavity ring down laser spectroscopy6,7. CH4 348 

fluxes are expressed per unit surface area enclosed within the corresponding static chambers and 349 

fluxes therefore reported as mg m-2 h-1 correspond to mg m-2 soil h-1 for soil fluxes, mg m-2 stem h-1 350 

for mature and young stem fluxes, mg m-2 leaf h-1 for leaf fluxes, mg m-2 aquatic h-1 for aquatic fluxes 351 

and mg m-2 MAC h-1 for macrophytes fluxes. Two sets of wood cores were extracted diagonally at 20 352 

and 130 cm stem height above the forest floor/water surface for 67% and 73%, respectively, of 353 

mature trees investigated for stem CH4 fluxes. The wood cores were incubated to investigate CH4 354 

production potential as described by Covey et al.23.  355 

Gas samples were collected from flux chambers and porewater (head space equilibration method) 356 

for 13C-CH4 analysis using gas-tight syringes and then transferred to evacuated (10-3 bar) 125 ml 357 

Wheaton vials fitted with Bellco stoppers and crimp seals. Vials were over-pressured by ~0.5 bar 358 

to ensure ingress of air did not occur as a result of pressure or temperature changes during transport 359 

to the laboratory.  The 13C values of CH4 were measured using a ThermoFinnigan Delta XP stable 360 

isotope ratio mass spectrometer.  Methane in the glass vials was purified and combusted to CO2 361 

using a ThermoFinnigan PreCon, which was modified to house a 6.4 mm stainless steel combustion 362 

reactor containing palladium on quartz wool heated to 780°C31 and a Sofnocat reagent trap 363 

operated at room temperature to remove carbon monoxide.  The instrument was calibrated using 364 

BOC alpha-gravimetric and Isometric Ltd standards (ISO-B, ISO-H, ISO-L and ISO-T)32.  Analysis 365 

precision based upon replicate measurements of standards containing 2 ppmv CH4 was ±0.1‰.  The 366 


13C values and mixing ratios of CH4 in the chamber headspace measured either three or four times 367 

during each 30 minute deployment were used to determine the 13C value of CH4 flux via Keeling 368 

regression analysis.   369 

The locations of trees were mapped in each of the 13 study plots along with the area occupied by 370 

emergent macrophytes and water-table depths (measured within 1 m of all trees) along the 371 

boundary of the plot and within four internal transects. Tree height, DBH, stem diameter at 10 cm 372 

intervals between 0 and 200 cm stem height, and basal diameter were measured for all trees in each 373 

plot.  The floodplain on River Madeira site sampled in 2013 was comprised of non-flooded forest 374 

because of receding water-table levels. Várzeas in the region had shrunk to small ponds with trees 375 
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around the edges, which were subjected to water-table levels at or below the soil surface. In all the 376 

study plots, the edge of the floodplain where floating macrophytes ceased to exist was regarded as 377 

the plot boundary and open water beyond that point, which contained no vegetation, was excluded 378 

from the ecosystem contribution estimations but was later included in the regional upscaling using 379 

the literature values8. Nine of the 12 sites investigated during 2014 contained both flooded and non-380 

flooded portions (<13.5%) of floodplain, three sites were fully flooded. Area occupied by aquatic 381 

surfaces, soil surfaces and mature and young trees were mapped for each study site and the 382 

corresponding surface areas were calculated.  383 

Using ArcGIS, a polygon map for each of the sampling sites was developed, which contained water 384 

table depth information and locations of trees across the transects.  A spatial distribution model 385 

developed from the information collected during the campaign was used to estimate macrophyte 386 

surface area, aquatic surface area and soil surface areas after deducting tree basal area 387 

(Supplementary Table 3). Methane fluxes from soil and water surfaces, and macrophytes were 388 

estimated using CH4 emission rates measured during the campaign and emission surfaces estimated 389 

using the spatial distribution model.  The leaf surface area of the young trees were estimated using 390 

the methods described by Santiago et al.33 which was multiplied by measured leaf CH4 flux rates to 391 

determine total ecosystem leaf CH4 emissions. Using the stem diameter measured between 20 and 392 

140 cm stem height, stem surface area was estimated and multiplied by the corresponding stem CH4 393 

flux rate to obtain stem emissions for each tree. Stem CH4 emissions for individual trees measured 394 

along the length of trees were then estimated based upon relationships between stem CH4 flux rates 395 

and stem sampling position at 30 cm tree stem height intervals. Approximately 42% of trees 396 

measured displayed a linear relationship (R2 > 0.95; P < 0.0001) between stem sampling height and 397 

stem CH4 flux rate. Trees exhibiting such a relationship had stem CH4 flux rates equal to zero at stem 398 

height between 2.3 and 3.5 m. The remaining trees studied exhibited an exponential relationship 399 

between stem CH4 flux rate and stem height.  Although regression models based on exponential 400 

relationships suggested the possibility of the entire tree emitting CH4, we set stem CH4 emissions to 401 

zero when the percentage difference between the ratios of stem CH4 flux at two consecutive 30 cm 402 

stem height intervals was ≥ 0.1%. In such cases, stem CH4 flux rate was equal to zero at stem heights 403 

ranging between 3.8 and 5 m. Using the stem diameter measured at 10 cm intervals between 20 and 404 

200 cm stem height, a relationship was established (exponential and/or power function relationship) 405 

to estimate stem circumference and surface area for each tree up to 5 m. Total CH4 emission up to 406 

2.3 - 5 m length of the individual trees based upon the relationship each tree followed, was 407 

estimated by multiplying measured and/or estimated CH4 flux rates and corresponding stem surface 408 

areas (Supplementary Table 3). Average stem CH4 flux per tree was estimated by dividing total stem 409 

emissions measured by the number of trees studied, within each study plot. The average flux rate 410 

per tree subsequently was multiplied by the total number of trees within each plot to obtain total 411 

ecosystem CH4 contribution from trees for each study site.  412 

To estimate total annual CH4 contributions from the entire lowland Amazon basin, we averaged CH4 413 

emissions across 13 sites for each individual pathways studied, assumed the estimated fluxes are 414 

representative of basin-wide fluxes and then applied the fluxes to the entire Amazon basin area, 415 

which was estimated using surface area data obtained from Melack et al.34 and Hess et al.22 416 

(Supplementary Table 5).  Monthly area coverage for open water, flooded forest and macrophytes in 417 
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1.77 million km2 of the central Amazon basin were obtained from Melack et al.34 and the percentage 418 

decrease in water-table depths relative to October data (lowest water-table month reported for 419 

most land cover classes by Melack et al.34) and percentage increase in water-table depths relative to 420 

May data (highest water-table month reported for most land cover classes in Melack et al.34) was 421 

estimated. The percentage increases/decreases were applied to the high and low water surface area 422 

for flooded forest, open water and macrophyte area within the Amazon basin wetland area (8.4 × 423 

105 km2) reported in Hess et al.22 and surface areas for the remaining months were estimated. Soil 424 

surface area at the peak of the wet season was considered to be zero and for the remaining 11 425 

months, soil surface area was estimated by subtracting the subsequent month flooded-forest 426 

surface area and tree basal area from the flooded forest area during the peak of the wet season. Our 427 

work suggests that up to 13.5% of the flooded forest was comprised of exposed soil and raised 428 

hummocks in May, hence it is estimated that the soil surface area reached zero in June and 429 

thereafter the water table receded. This observation was applied to soil surface area calculations. 430 

Aquatic surface area was estimated by subtracting tree basal area from flooded-forest area. 431 

Estimated monthly surface areas are listed in Supplementary Table 5. Tree-mediated CH4 flux, similar 432 

to other CH4 emission pathways, was averaged across all 13 sites and was estimated to be 1350 ± 433 

553 g ha-1 d-1 and 98 ± 47 g ha-1 d-1 for mature and young tree stem emissions between 0-140 cm 434 

stem heights above the forest floor/water surface. However, when 0 to 5 m stem height was 435 

considered the fluxes increased to 1927 ± 793 g ha-1 d-1 and 104 ± 49 g ha-1 d-1 for mature and young 436 

trees, respectively. Open water CH4 fluxes outside/beyond the edges of the flooded-forest were not 437 

measured in our study. Fluxes from macrophytes were measured in some plots but the macrophytes 438 

tended to be floating at the edges rather than inside the flooded-forest. Rooted macrophytes were 439 

absent in all the plots. Thus CH4 flux data for open water and macrophytes from Devol et al.8 were 440 

used to estimate these components for the entire Amazon basin. Uncertainties expressed as 441 

standard deviation (SD) of means in CH4 fluxes from all pathways were estimated using a 442 

bootstrapping method (10,000 iterations).  443 

Aircraft measurements 444 

To estimate CH4 fluxes (F) based on atmospheric CH4 vertical profile measurements we apply a 445 

simple air column budgeting technique following Miller et al.35:  446 

  447 

where ∆CH4=CH4,site-CH4,bg is the difference between CH4 mass per volume measured in situ at a site 448 

inside the basin and background (bg) air entering the basin from the Atlantic, z is height above 449 

ground (agl) and t(z) air-mass trajectory travel time from the coast to height z at the site. The CH4 450 

concentration of background air is estimated from atmospheric SF6 measured at the site and 451 

compared with NOAA background stations Barbados (RGB, 7.92°S, 14.42°W) and Ascension (ASC, 452 

7.92°S, 14.42°W) respectively, using a linear mixing model: 453 

    with  .  454 

SF6 is suited for this purpose because it has virtually no sources in the Amazon Basin and 455 

atmospheric SF6 concentration is substantially higher in the northern compared to the southern 456 
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hemisphere. Air mass travel times are estimated using back trajectories calculated using the 457 

HYSPLIT model36 (http://ready.arl.noaa.gov/HYSPLIT_traj.php).  458 

We applied this method to vertical air profiles sampled roughly bi-weekly from 2010 to 2013 at four 459 

sites in the Brazilian Amazon located along the main airstream: at Alta Floresta (ALF; 8.80°S, 460 

56.75°W), Rio Branco (RBA; 9.38°S, 67.62°W), Santarém (SAN; 2.86°S; 54.95°W) and Tabatinga (TAB; 461 

5.96°S, 70.06°W). Concomitantly, carbon monoxide (CO) also was measured which allowed us to 462 

determine the CH4 component derived from fires during the dry season of each site. Air samples 463 

were collected using a two-component portable semi-automatic collection system, consisting of a 464 

first unit with two compressors and rechargeable batteries and a second unit with 17 (at SAN) and 465 

12 (at ALF, RBA and TAB) 700 mL boro-silicate glass flasks connected by tubing and valves, which are 466 

opened and closed by a microprocessor. The samples were generally taken between noon and 1 PM 467 

local time, when the boundary layer tends to be well mixed. After sampling, the unit containing the 468 

air flasks was transported to the high-precision greenhouse gas laboratory at IPEN (Instituto de 469 

Pesquisas Energeticas e Nucleares) in Sao Paulo, where CH4 and CO concentrations in air were 470 

quantified. The accuracy and precision (1.5 ppb) of our greenhouse gas analysis system in Brazil is 471 

similar to the system of the bottom up of NOAA (National Oceanic and Atmospheric 472 

Administration, USA)35.   473 
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Data availability statement 494 

Our aircraft CO2 and CH4 measurement data is available at http://www.ccst.inpe.br/projetos/lagee/. 495 

CH4 flux data from the bottom up study are available from SRP on request. 496 

Supplementary table legends 497 

Table 1: Additional information for all sampling sites (50 × 80 m) in this study. 498 

Table 2: Tree species identified within our 13 plots across the central Amazon basin. 499 

http://ready.arl.noaa.gov/HYSPLIT_traj.php
http://daac.ornl.gov/
http://www.ccst.inpe.br/projetos/lagee/
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Table 3: Surface area (m2) used to estimate ecosystem contributions from all CH4 emitting pathways in each 500 

sampling plot. 501 

Table 4: Coefficient of variation (%) for surface areas used in the ecosystem contribution 502 

estimations. 503 

Table 5: Estimated surface areas for the entire lowland Amazon basin (km2)a. 504 

Supplementary figure legends 505 

Figure 1: Photographs depicting one of the study sites, a typically inundated flooded forest (a), soil 506 

flux (b), mature tree stem flux (c) and aquatic flux (d) measurements. 507 

Figure 2: Frequency distribution of stem CH4 fluxes from 20-50 cm of stem height from mature trees 508 

measured from river a) Negro, b) Madeira, c) Amazon, d) Solimões and e) Tapajós. 509 
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Table 1: Methane fluxes and estimated ecosystem contributions from five major rivers in the central Amazon basin.  

  River Negro River Madeira River Amazon River Solimões River Tapajós 

Methane 
emitting  
pathways 

Fluxes ± SD
a
 

Ecosystem 
contribution 

Fluxes ± SD 
Ecosystem 

contributions 
Fluxes ± SD 

Ecosystem 
contributions 

Fluxes ± SD 
Ecosystem 

contributions 
Fluxes ± SD 

Ecosystem 
contributions 

  mg m
-2

 h
-1

 g ha
-1

 d
-1 

(%) mg m
-2

 h
-1

 g ha
-1

 d
-1 

(%) mg m
-2

 h
-1

 g ha
-1

 d
-1

 (%) mg m
-2

 h
-1

 g ha
-1

 d
-1

 (%) mg m
-2

 h
-1

 g ha
-1

 d
-1

 (%) 

Mature tree stem emissions
b
 474 ± 151 (58.3) 

 
   836±323 (52.3)   823±214 (43.6) 

  
  1874±477 (53) 

  
  2866±759 (41.5) 

  20-50 cm 30.2 ± 20.7 33.2±26 46.4 ± 33.7 83.2±42.8 141±71.4 

50-80 cm 22.2 ± 15.3 27.5±23.1 34.5 ± 25.6 62.4±32.4 106±54.5 

80-110 cm 15.4 ± 10.7 24.8±22.7 24.5 ± 18.3 44.2±23.1 73.5±38.4 

110-140 cm 10.7 ± 7.6 20.1± 19.4 16.7 ± 13.1 31.9±17.2 51.8±29.1 

Young tree stem emissions
b
 47.4±11 (5.8)  83±33.2 (5.2)  50.3±13.3 (2.7)  157±40.5 (4.4)  181±56.1 (2.6) 

15-45 cm 59±28.2 50.2±32.9 103±44.9 150±67.4 271±109 

45-75 cm 41.9±20.2 42.5±32.3 73.5±32.8 108±49.9 180±74.1 

75-105 cm 29.1±14.1 35.4±31.7 50.6±23.4 77.6±36.2 125±54.1 

105-135 cm 18.9±9.7 28.5±25.7 32.8±16.4 49.1±24.2 77.83±38.3 

Young tree leaf 
emissions

c
 

0.016±0.04 3.86±4.6 (0.5) 0.019±0.04 5.07±4.8 (0.317) 0.038±0.07 5.93±7.3 (0.3) 0.051±0.09 13.5±13.1 (0.4) 0.09±0.11 17.3±15.7 (0.2) 

Macrophytes -  - - 7.29±10.8 
 

190±745 (10) 6.62±8.9 134±261 (3.8) 39±41.9 966±2105 (13.9) 

Aquatic 
emissions 

1.51±3.2 219±544 (27) 7.34±2.59 423±148 (26.5) 6.1±14.7 768±1792 (40.7) 4.37±5.77 1269±1111 (35.9) 25.7±29.8 2426±2898 (35.1) 

Soil emissions 1.06±0.8 67.7±56 (8.3) 1.33±1.57 251±289 (15.7) 2.73±2.62 49±179 (2.6) 4.27±4.3 88.6±108 (2.5) 10.6±7.7 456±564 (6.6) 

a The fluxes are per unit area of the corresponding CH4 emitting surface area and SD are estimated using bootstrapping methods; b Ecosystem contributions 
from young and mature tree stems were estimated using the measured stem CH4 fluxes between 15-20 and 135-140 cm stem height above the soil/water 
surface at 30 cm stem height intervals and multiplied by the corresponding stem surface area. Contributions between 0-20 cm stem height were assumed 
to be the same as the 20-50 cm stem CH4 flux and was included in the ecosystem contributions; c young tree leaf CH4 fluxes are the average of four different 
branches per tree (n = 260). No CH4 emissions were detected from mature tree leaves (n = 180).     
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Table 2:  Methane production potentials measured from the wood cores extracted. 

No of trees sampled 
Percentage trees showing 
evidence of CH4 production 
potential (%) 

CH4 production potential rates ± 
SD (µg CH4 h

-1 m-3 vol of wood)a 

At 20 cm above the soil/water surface 

n = 1232 1.3 158 ± 274 

At 130 cm above the soil/water surface 

n = 1343 3.7 440 ± 579 
a CH4 production potential was measured by incubating the stem cores for 12 hrs in 35 ml Wheaton vials flushed with N2

23. 
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Table 3: 13C values of tree CH4 flux and porewater CH4. 

 Flux   Porewater  

 
13C(CH4)

a 
SD nb 

13C(CH4)
c N 

   (‰)  (‰)    (‰)  

River Negro     

N3 -76.3 0.9 4 - - 

N6 -64.6 3.2 5 - - 

River Amazon     

A7 -65.4 2.2 4 -58.5/-54.5 2 

A9 -61.8 3.3 3 -70.8/-63.3 3 

River Tapajós     

T11 -59.1 0.4 3 -55.6 1 

a Mean 13C values are reported for CH4 flux; b n represents one chamber deployment from which 

three or four pairs of CH4 concentration and 13C(CH4) values were used to determine a 13C value 

for CH4 flux via Keeling regression analysis; c The range of 13C values are reported for porewater 
CH4. 
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Table 4: Estimated annual CH4 emissions from the Amazon basin using bottom up and top down methods.  

Approach:  

bottom up (BU) 

top-down (TD) 

CH4 emitting pathways CH4 fluxes ± SD (g ha-1 d-1) 
Annual emissions ± SD  
(Tg CH4 yr-1)a 

    Study 

 
Mature tree stems 1350 ± 553 - 1927 ± 793b 14 ± 1.8 - 20 ± 2.5b  This study 

 

Young tree stems 98 ± 46.8 - 104 ± 49.2b 1.02 ± 0.15 - 1.08 ± 0.16b This study 

 

Young tree leaf emissions 9.5 ± 15.9 0.099 ± 0.05  This study 

BU 
  

15.1 ± 1.8 - 21.2 ± 2.5b This study 

     

 

Aquatic surfaces 1033 ± 1622 9.7 ± 5.2 This study 

 

Soil surfaces 170 ± 299 1.1 ± 0.7 This study 

 

Macrophytes 3245 ± 721 – 1229 ± 334c 8 ± 0.6d 3,8 

 
Open water 270 ± 80.1 1.2 ± 0.05d 8

 

 
River channel 

 
0.4 - 0.6e 19

 

BU 
 

Total surface emissions (including trees) 35.6 ± 5.6 – 41.7 ± 5.9b This study 

BU 
 

Total surface emissions (no trees) 20.5 ± 5.3 This study 

BU 
 

Total surface emissions (no trees) 29.4 3
 

BU 
 

Total surface emissions (no trees) 26.2 ± 9.8 2
 

TD Biomass burning (non-wetland source)  4.1 ± 0.7 This study 

TD All 
 

42.7 ± 5.6 This study 

TD All 
 

44 ± 4.8 10
 

TD All   40.2 - 52  4
 

TD All  37 ± 5.9 26 
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a Surface area used to estimate regional CH4 contributions reported in Supplementary Table 5; b The upper range represents the inclusion of stem CH4 

emissions estimated for up to 5 m of the stem height for mature trees and 1.85 m for young trees using the relationship between stem CH4 flux and 
stem height positions; c Aquatic macrophyte CH4 emissions from high and low water season estimated and reported by Devol et al.8 and Melack et al.3; d 

CH4 fluxes to estimate emissions from macrophytes and open water were obtained from Devol et al.8 and Melack et al.3; e total annual  CH4 emission 
estimates from river channels in the Amazon basin obtained from Sawakuchi et al.19. 

 

 

 

 

 


