99 research outputs found

    Methods for analysis of brain connectivity : An IFCN-sponsored review

    Get PDF
    The goal of this paper is to examine existing methods to study the "Human Brain Connectome" with a specific focus on the neurophysiological ones. In recent years, a new approach has been developed to evaluate the anatomical and functional organization of the human brain: the aim of this promising multimodality effort is to identify and classify neuronal networks with a number of neurobiologically meaningful and easily computable measures to create its connectome. By defining anatomical and functional connections of brain regions on the same map through an integrated approach, comprising both modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network analysis becomes a powerful tool for exploring structural-functional connectivity mechanisms and for revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders. Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this current state-of-art document, which covers the available knowledge on anatomical and functional connectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive brain stimulation techniques and measures of local and global brain connectivity. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Peer reviewe

    Is the Homunculus "Aware" of Sensory Adaptation?

    Get PDF
    Neural activity and perception are both affected by sensory history. The work presented here explores the relationship between the physiological effects of adaptation and their perceptual consequences. Perception is modeled as arising from an encoder-decoder cascade, in which the encoder is defined by the probabilistic response of a population of neurons, and the decoder transforms this population activity into a perceptual estimate. Adaptation is assumed to produce changes in the encoder, and we examine the conditions under which the decoder behavior is consistent with observed perceptual effects in terms of both bias and discriminability. We show that for all decoders, discriminability is bounded from below by the inverse Fisher information. Estimation bias, on the other hand, can arise for a variety of different reasons and can range from zero to substantial. We specifically examine biases that arise when the decoder is fixed, “unaware ” of the changes in the encoding population (as opposed to “aware ” of the adaptation and changing accordingly). We simulate the effects of adaptation on two well-studied sensory attributes, motion direction and contrast, assuming a gain change description of encoder adaptation. Although we cannot uniquely constrain the source of decoder bias, we find for both motion and contrast that an “unaware ” decoder that maximizes the likelihood of the percept given by the preadaptation encoder leads to predictions that are consistent with behavioral data. This model implies that adaptation-induced biases arise as a result of temporary suboptimality of the decoder

    Probabilistic Computation in Human Perception under Variability in Encoding Precision

    Get PDF
    A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain’s remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    brainlife.io: a decentralized and open-source cloud platform to support neuroscience research

    Get PDF
    Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants
    • 

    corecore