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� There are a variety of technologies valuable for exploring human brain connectivity.
� The main aspects of anatomical, functional and effective connectivity are described.
� A multimodality approach can be useful to evaluate the human brain connectome.

a b s t r a c t

The goal of this paper is to examine existing methods to study the ‘‘Human Brain Connectome” with a
specific focus on the neurophysiological ones. In recent years, a new approach has been developed to
evaluate the anatomical and functional organization of the human brain: the aim of this promising mul-
timodality effort is to identify and classify neuronal networks with a number of neurobiologically
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MEG
TMS-EEG
Non-invasive brain stimulation
meaningful and easily computable measures to create its connectome. By defining anatomical and func-
tional connections of brain regions on the same map through an integrated approach, comprising both
modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network
analysis becomes a powerful tool for exploring structural–functional connectivity mechanisms and for
revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders.
Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this
current state-of-art document, which covers the available knowledge on anatomical and functional con-
nectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive
brain stimulation techniques and measures of local and global brain connectivity.

� 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.
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1. Introduction

The human brain contains about one hundred billion neurons,
each establishing several thousand synaptic connections in an
intricate matrix, which can be mathematically modeled in several
ways. One approach models the brain as myriads of oscillators (i.e.,
cyclic firing of individual neurons and/or of spatially separated
neuronal assemblies) organized in network structures at micro-
meso-macro-scale levels, with nodes and links that dynamically
cooperate with time-varying aggregations via transient locking/
unlocking (i.e. orchestrated synchronization) of their cyclic firing
(Singer, 1990; Jung et al., 2001; Makeig et al., 2002; Fuentemilla
et al., 2006; Fries, 2015). Neural networks continuously re-shape
via plastic mechanisms of synaptic Long Term Potentiation/
Depression reflecting the flow and type of input from internal
and external environments, including daily experiences, learning/-
training, and emotional and aging processes. Therefore, when eval-
uating the brain’s anatomical and functional organization from the
perspective of complex networks (Bassett and Bullmore, 2006;
Bullmore and Sporns, 2009; Sporns, 2011), the neuronal system
can be modelled by a set of nodes (anatomical/functional neuronal
aggregates) and interconnecting edges (structural/functional
connections) (Fig. 1). This kind of architecture is regarded as a
key substrate for two fundamental, coexisting and dynamically



Fig. 1. Construction of a brain network.
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interplaying brain properties: (1) the functional segregation of dif-
ferent regions and their involvement in cognition, sensorimotor
integration, perception, and behavior (Tononi et al., 1994); (2)
the functional integration ranging from the neuron (microscale)
to inter-areal interactions (macroscale), to overall cognitive and
behavioral output (Sporns and Zwi, 2004). In recent years, numer-
ous studies approached human brain modeling using a new multi-
disciplinary method known as complex network analysis, with the
aim of classifying neuronal networks with a small number of neu-
robiologically meaningful and easily computable measures
(Rubinov and Sporns, 2010) and creating its connectome (Sporns,
2012). Modern brain mapping techniques — such as diffusion
MRI, functional MRI, Non-Invasive Brain Stimulation (NIBS), EEG,
and MEG— have produced and continue to produce increasingly
larger datasets of anatomical or functional connection patterns.
While neuroimaging techniques are able to faithfully reproduce
the scaffold where the ‘‘quest” for brain function dynamics take
place within a time frame during which inhibitory and facilitatory
connections fluctuate simultaneously, such temporal dimensions—
particularly the time epochs which selectively define connectivity
patterns before, during, and following a given task—can be reliably
discerned by different brain mapping techniques. By explicitly
defining anatomical and functional connections on the same map
of brain regions, network analysis is a powerful tool for exploring
structural–functional connectivity relationships (Zhou et al.,
2006; Honey et al., 2007, 2009;) and revealing the causative link-
age between connectivity changes and task performance in the
healthy or presence/severity of symptoms in neurologic neuropsy-
chiatric disorders and aberrant connectivity (Stam et al., 2007;
Bassett et al., 2008; Leistedt et al., 2009; Stam et al., 2009). The goal
of this review is to examine existing and innovative methods for
the human brain connectome exploration –particularly for the
neurophysiological ones– providing measures of local and global
connectivity from an IFCN-endorsed meeting of a panel of interna-
tional experts. The present review complements another IFCN-
endorsed guideline on topographic and frequency analysis of
resting-state EEG rhythms (Babiloni et al., 2018, in press).
2. Structural brain connectivity: Experimental approaches and
in vivo studies of the human brain

2.1. Chasing neuronal circuits: A never-ending story

Over the centuries, many paradigm shifts have occurred in the
views on neuronal connections, their behavioral output and their
alterations in diseases (Bentivoglio and Mazzarello, 2010). The
‘‘neuron doctrine”, which extended cell theory to the nervous sys-
tem, was enunciated in 1891 (Shepherd, 2015). A breakthrough in
the visualization of neurons was provided by the ‘‘black reaction”,
the metallic impregnation introduced in 1873 by Camillo Golgi
(1843–1926). Golgi staining revealed neurons, including their pro-
cesses, in their entirety and with unprecedented detail. This
allowed studies of neuronal circuits (Golgi, 1885), and still allows
the investigations of the local neuronal circuitry of randomly
impregnated neurons (Fig. 2A), also in tissue blocks of post-
mortem human brain. The revelation power of the Golgi method
is only matched after more than one century by genetic cell tagging
with fluorescent proteins, or intracellular neuron filling (e.g., in
surgically resected tissue blocks of the human brain) (Fig. 2B and
C).

The champion of the ‘‘neuron doctrine” was Santiago Ramón y
Cajal (1852–1934), who accomplished a monumental work, largely
based on the Golgi stain, in which he provided a map of neuronal
connectivity in the mammalian brain (Cajal, 1909, 1995). The
debate between Cajal and Golgi—who had adhered to the reticular
theory of nervous system organization—boosted neuroscience
studies, focusing interest on the gray matter. White matter inves-
tigations were essentially descriptive, based on manual dissections
and on the study of brain sections with the myelin stain introduced
by Carl Weigert (1845–1904). Seminal contributions on the organi-
zation of fiber bundles in the human brain were provided by Carl
Wernicke (1848–1900) and Joseph Jules Déjérine (1849–1917)
(Schmahmann and Pandya, 2007).

The second half of the twentieth century witnessed a revolution
in the experimental studies of neuronal connections, together with



Fig. 2. Histological methods to study local neuronal connectivity and applicable to human brain samples. (A) The Golgi silver impregnation entirely fills neuronal cell bodies
and their processes, allowing detailed visualization and reconstructions; on the other hand, with the Golgi stain it is impossible to predict which cells will be impregnated in
any given preparation. (B) Filling neurons with fluorophores, as part of in-vitro electrophysiological experiments (for example in surgically resected brain tissue), allows
correlating microscopic morphology with the functional properties of individual neurons. (C) Immunocytochemistry targets specific cellular markers, and combining different
labels allows the study, for example, of connectivity at the individual synapse level. (D) Schematic representation of the clarification approach in which brain tissue blocks are
rendered transparent and immunocytochemically labeled neurons can be visualized in 3D. (E) Lipophilic dyes applied on ex-vivo samples of nervous tissue are taken up by
cell membranes and diffuse to a certain distance, thereby tracing short-range connections, also in human preparations.

1836 P.M. Rossini et al. / Clinical Neurophysiology 130 (2019) 1833–1858
the explosion of neuroscience in the last decades of the century. As
briefly discussed below, novel powerful techniques were intro-
duced. The exploration of connectivity in the human brain
remained, however, a challenging problem until the introduction
of in vivo imaging.

2.2. Long-range neuronal connectivity

2.2.1. Anterograde and retrograde degeneration techniques
Pioneering early studies revealed that retrograde degeneration

(‘‘secondary atrophy”) of neuronal cell bodies and anterograde
degeneration of fibers can provide effective tools to trace neuronal
connections (Bentivoglio and Mazzarello, 2010) (Fig. 3A). Towards
the end of the nineteenth century, neuronal alterations consequent
to retrograde damage could be assessed by the cell stain (with
thionin or toluidine blue) introduced in 1884 by Franz Nissl
(1860–1919). Especially influential was the observation of antero-
grade degeneration of nerve fibers after transection reported in
1851 by Auguste Volney Waller (1816–1870) and named after
him ‘‘Wallerian degeneration” (Fig. 3A).

Besides its implications for the trophic dependence of the axon
from the cell body, this finding paved the way to the introduction
of anterograde tract tracing methods based on silver impregnation
of degenerating fibers after experimental lesions (Nauta and
Gygax, 1951; Fink and Heimer, 1967). Metal impregnation stains
are capricious and laborious, and degeneration methods have lim-
ited sensitivity, but these techniques gave a great impulse to
experimental neuroanatomical studies. Importantly, anterograde
degeneration revealed by modifications of silver impregnation
was also applied to post-mortem investigations on the human



Fig. 3. Methods to study long-range connections in the human brain. (A) Transections of nerves or CNS fiber bundles invariably cause anterograde (Wallerian) degeneration,
i.e. destruction and elimination of the portions of axons and terminal ramifications distal to the lesion; depending on lesion location and size, degeneration can also follow a
retrograde path and involve neuronal cell bodies. (B) Diffusion-weighted magnetic resonance imaging is used to identify in vivo the spatial orientation of fiber bundles in the
brain, making it possible to reconstruct central pathways. An important limitation of the technique is that in areas where fibers intersect, the signal averages out and accurate
directions cannot be established.
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brain, especially after restricted lesions occurring a few weeks
before death (Mesulam, 1979).

2.2.2. Classical experimental tract tracing techniques based on axonal
transport

A turning point in the study of structural brain connectivity was
the discovery of anterograde and retrograde axonal transport
(Bentivoglio, 1999). Axonal transport requires live axons; the
active transport of tracers obviously cannot be applied to the
human brain. Findings obtained with tract tracing based on axonal
transport represent nowadays the ‘‘ground truth” for studies of the
human brain based on in vivo imaging, and in particular on diffu-
sion tractography.

Anterograde tract tracing based on the use of tritiated amino
acids revealed by autoradiography was introduced in the early
1970s (Cowan et al., 1972). With this approach, trajectories and
terminal fields of fibers originating from the tracer injection site
could be delineated in detail. Anterograde tract tracing approaches
have then been implemented (Gerfen and Sawchenko, 1984;
Glover et al., 1986). In the same years, the discovery of retrograde
axonal transport (Kristensson, 1970; Kristensson and Olsson, 1971)
introduced as a tool the enzyme horseradish peroxidase (HRP),
visualized by a histochemical reaction, which was soon applied
to experimental retrograde tracing of the origin of projections to
the tracer injection site (LaVail and LaVail, 1972).

The introduction of other retrograde tracers rapidly followed to
increase sensitivity, combine tracers for multiple retrograde label-
ing for the study of branched connections, combine retrograde
tracing with immunohistochemistry or in situ hybridization for
the neurochemical characterization of pathways, and so forth. Flu-
orescent retrograde tracers turned out to be especially effective
and versatile for these applications (e.g. Bentivoglio et al., 1980;
Kuypers et al., 1980; Schmued and Fallon, 1986).

Conventional tract tracing has been implemented in recent
years with genetic tracing for the study of the connectivity of
specific neurons using cell-type-specific promoters (Oh et al.,
2009). Most anterograde and retrograde tracers explore monosy-
naptic connections since they can cross synapses only in minute
amounts, ineffective for transsynaptic tracing unless a bolus is
injected, which is not feasible in the brain. Neurotropic viruses,
which travel through axons and replicate in infected neurons,
can instead provide tracing tools (Kristensson et al., 1974) applica-
ble to trans-synaptic tract tracing (Kuypers and Ugolini, 1990)
thanks to their propagation across synapses.
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2.2.3. Novel approaches to experimental tract tracing: Optogenetics
and chemogenetics

These innovative techniques are increasingly used to investi-
gate the relationship between neuronal activity, neuronal circuits,
and behavior.

The term optogenetics was introduced in 2006 (Deisseroth
et al., 2006) referring to the general optogenetic discovery
(Boyden et al., 2005). By combining genetic and optical methods,
optogenetics utilizes molecular light-sensors to switch on and off
neuronal electrical activity. Optogenetics thus allow to investigate
neurons and neuronal circuits underlying specific behaviors at the
time scale of milliseconds. By this approach, functional effects of
defined neuronal cell types can be controlled in living tissue and
in freely moving animals (Deisseroth, 2015). Optogenetics has also
been combined with functional MRI for the experimental study of
cell-type-specific contributions to behavioral output together with
a ‘‘whole brain read-out” at the millimeter scale (Lee et al., 2017).
From the translational point of view, applications of optogenetics
in humans for therapeutic purposes are currently envisaged. Clin-
ical applications of the optogenetic system will require obvious
implementation and cross-disciplinary know-how (Delbeke et al.,
2017).

The term ‘‘chemogenetics” was used to describe experiments of
site-specific functional group modifications for the analysis of
DNA-protein interactions (Strobel, 1998). Currently, the term is
used to indicate the processes by which ‘‘designer macro-
molecules” interact with previously unrecognized small molecules
(Roth, 2016). Over the past two decades, chemogenetically engi-
neered molecules (kinases, non-kinase enzymes, G protein-
coupled receptors, ligand-gated ion channels) have been used
experimentally for cell-specific targeting; these molecules modu-
late cell signaling, turning neuronal circuits on and off. Among
chemogenetically engineered protein classes, the most commonly
used are the so-called Designer Receptors Exclusively Activated
by Designer Drugs (DREADDs) (Roth, 2016).

2.3. Local neurocircuitry in the human brain

2.3.1. Diffusion of dyes
An attempt to trace connections in the human brain using

in vitro diffusion of wheat germ agglutinin conjugated with HRP
gave very limited results (Haber, 1988). More interesting findings
were obtained using the diffusion of lipophilic dyes along cell
membranes in fixed tissue blocks (Fig. 2E). The fluorescent dyes
carbocyanines, and in particular DiI and DiO (Honig and Hume,
1989) proved useful for this application. However, dye diffusion
can label axons only for a few millimeters, requiring a tracing time
of several weeks. Other dyes have been introduced (Heilingoetter
and Jensen, 2016), and in particular NeuroVue dyes, which can
trace axons for slightly longer distances and at faster diffusion
rates than carbocyanines (Fritzsch et al., 2005). The limitations of
ex vivo tracing, however, hamper its application for extensive fiber
tracking in the human brain.

2.3.2. Seeing through: Tissue clarification
The natural 3D structure of cells – especially neurons and glial

cells, which extend their ramifications in many directions –
requires volumetric imaging. The heterogeneous chemical compo-
sition of biological tissues (mostly water, proteins, and lipids) gen-
erates substantial scattering of the transmitted light, especially at
the interface between aqueous protoplasm and membrane lipids,
thereby hindering microscopic observation of histological sections
beyond a certain thickness. Replacing lipids with a medium charac-
terized by the same refractive index as proteins can effectively ren-
der tissues transparent while preserving the native molecular
profile and tissue structure, allowing the microscopic observation
of the microcircuitry of labeled (e.g., by immunohistochemistry
or fluorescent protein tagging) elements.

Aqueous-based clearing techniques are currently widely used
and are based on the reduction of light scattering by immersion
in a high-refractive-index molecule solution. A breakthrough has
been provided by a brain-hydrogel hybrid formed by the so-called
CLARITY (Clear Lipid-exchanged Acrylamide-hybridized Rigid
Imaging/immunostaining/in situ hybridization-compatible Tissue
Hydrogel) (Chung et al., 2013). The clarification of thick tissue
blocks, such as those useful for the study of the human brain
(Fig. 2D) remains, however, a challenge. Amethod to adapt CLARITY
to human brain samples with a thickness up to 8 mm has been
recently proposed (Morawski et al., 2018). Of note, bridging histor-
ical and modern approaches to microcircuits, the Golgi (Golgi-Cox)
stain is currently optimized for the use with CLARITY approaches,
and could be useful for the study of microcircuitry and the compar-
ison with microstructure MRI data (Kassem et al., 2017).

2.4. Diffusion tractography

Diffusion-weighted imaging (DWI), a computational recon-
struction method of diffusion-weighted MR images (tractography),
allows quantitative estimates in vivo of the organization of fiber
bundles (tractograms). The characteristic color coding of recon-
structed fiber bundles results in images attractive also to the public
at large, thus making this approach a very popular insight in the
human brain. This method is extensively presented in another part
of our review.

The diffusion coefficient measures the ease of the translational
motion of water in tissues. Main DWI acquisition schemes are pro-
vided by diffusion tensor imaging (DTI) (Fig. 3B), diffusion spec-
trum imaging (DSI), and high angular resolution diffusion
imaging (HARDI). DTI utilizes a tensor model (a matrix of mea-
sured diffusion in three orthogonal planes) to characterize the
water diffusion properties through myelinated nerve fibers
(Basser et al., 1994). Fiber orientation profiles derive from the sta-
tistical profile of the displacement of water molecules at a voxel
scale and fiber trajectories are inferred from adjacent similar diffu-
sion profiles (Thomas et al., 2014). DSI adds to DTI the capability of
resolving multiple directions in each voxel (Wedeen et al., 2005),
thus improving also the tracking of intersecting fibers. HARDI
improves the accuracy of tractography by using a large number
of diffusion-encoding gradients with a reasonable scanning time.

After the first validation study in the macaque brain (Parker
et al., 2002), a number of validation studies have been performed,
with rather positive or more critical conclusions. For example, the
comparison of DSI in the light of extensive autoradiographic tract
tracing data on long association pathways in the monkey cerebral
hemispheres was found to replicate main features of these fiber
tracts (Schmahmann et al., 2007). This comparison proved useful
and effective for major cortical fiber bundles (superior, middle
and inferior longitudinal fasciculi, fronto-occipital fasciculus, unci-
nate and arcuate fasciculi, cingulum bundle) (Schmahmann et al.,
2007). Another study, based on DWI approaches to the monkey
brain, reached more critical conclusions on the potential for accu-
rate fiber tracing (Thomas et al., 2014). The results of a recent
‘‘open international tractography challenge”, tractograms pro-
duced by 20 research groups turned out to contain 90% of the
ground truth bundles, but were also reported to ‘‘contain many
more invalid than valid bundles” (Maier-Hein et al., 2017). These
results encourage innovation.

2.5. Macroscale of connections

An exhaustive description of the intra- and inter-hemispheric
anatomical bundles connecting different cortical and subcortical



Fig. 5. (A) Connectome nodes. Cortical terminations of the arcuate fasciculus.
Yellow higher, red lower termination density. (B) Connectome edges. Two major
WM tracts, cortico-spinal tract (CST) & arcuate fasciculus.
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areas and nuclei cannot be done within the frame of this review.
However, a rapid overview of the main connecting fiber bundles
is provided in the following (see Fig. 4).

There are a number of short and long association tracts that
provide intra-hemispheric communication within the cerebral cor-
tex. The cingulum is an example of a long association tract. Com-
missural fibers provide communication between homologous
regions of the hemispheres, the largest one being represented by
the corpus callosum. Other commissures include the anterior com-
missure, which connects homologous cortical frontal lobe areas
and the fornix, which is the efferent projection from the hippocam-
pus. The posterior fibers (called the post-commissural fornix) of
each side continue through the hypothalamus to the mammillary
bodies; then to the anterior nuclei of thalamus, which project to
the cingulate cortex. The anterior fibers (pre-commissural fornix)
end at the septal nuclei and nucleus accumbens of each half of
the brain. The internal capsule is a projection tract that contains
many fibers carrying information between cortical and subcortical
regions and the spinal column. It descends lateral to the head of
the caudate nucleus and medial to the lentiform nucleus and tha-
lamus. The corona radiata is where the internal capsule fans out
superiorly. It is divided into several parts: the anterior limb con-
tains frontopontine and corticothalamic fibers; the genu contains
corticobulbar fibers; the posterior limb contains corticospinal and
parieto-occipito-temporo-pontine fibers; and the retrolentiform/
sublentiform part includes the auditory and optic radiations. The
internal capsule becomes the crus cerebri in the midbrain.

Cascades of short association fibers interconnect modality-
specific primary with secondary sensory association areas and
these latter with multimodal sensory areas located at the borders.
They may remain within the gray matter of the cortex or pass
through the superficial white matter between neighboring cortical
areas as U fibers. Long association systems connect the modality-
specific association cortex and the multimodal areas in the occipi-
tal, temporal and parietal lobes with the premotor and prefrontal
cortex. Short association fibers interconnect the prefrontal cortex,
the premotor area and the motor cortex with the primary
somatosensory cortex. Connections from multimodal association
cortices and prefrontal cortex (PFC) to limbic structures pass via
the cingulum to the medial temporal lobe; other fibers originating
from association cortices reach limbic structures via the insula.
Most association connections are reciprocal.
Fig. 4. Frontal section of the human brain (m
3. Methods for connectomics

A long-term goal of neuroscience is to develop models that inte-
grate brain structure and function to predict human perception,
cognition and behavior (Goldstone et al., 2015; Pestilli, 2015),
but they often lack characterization at the level of the individual
subject. Neuroimaging research has only begun to address this
knowledge gap, and substantial work needs to be carried out
before we can reliably study individuality and variation of brain
networks (Finn et al., 2015; Laumann et al., 2015; Smith et al.,
2015). Recent proposals have been made for the development of
innovative technologies that can enable the study of the computa-
tional architecture of brain connections in individuals. The brain
connectome is comprised of both grey matter (GM) regions repre-
senting neuronal units of information processing (the nodes,
Fig. 5A), and white-matter tracts (WM), serving as structural com-
munication pathways (the edges, Fig. 5B) (Bullmore and Sporns,
2009). To date, methods for precision measurement of brain net-
works have been developed, but not been fully optimized and
agreed upon. To approach this issue, innovative technologies for
the study of the computational architecture of brain connections
in individuals and building precision models of brain connection
patterns have been proposed.

DTI and fiber tractography allow investigators to measure the
properties of the connectome in living human brains at the meso-
and macro-scale (mm to cm), providing information about brain
computational machinery that –because of experience and train-
ing– changes over minutes, hours, days, months and years
(Sowell et al., 2003; Fields, 2008b; Westlye et al., 2009; Behrens
and Sporns, 2012; Jbabdi et al., 2015). Recent technologies allow
odified from � Pearson Education, 2013).
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us to automatically identify major white matter tracts in living
brains (see Fig. 5A and B) (Mori et al., 2005; Yeatman et al., 2012;
Pestilli et al., 2014). These tracts are the most prominent edges in
the connectome, information highways that implement communi-
cation about the senses, motor control, cognition and language. So
far, we have learned that the biological properties of these tracts
change transiently in response to experience, and can be steadily
modified by learning, development and aging (Fields, 2008a,
2015; Risacher and Saykin, 2013). Even though much important
work has been done to map the human connectome, to date the full
set of connectome edges is still unknown, and we name only a few.
Limitations to mapping the full human connectome have been due
to two sources of variability in connectome estimates: (1) the
dependency of connectomes on the trackingmethods and (2) insuf-
ficient reliability of connectome estimates in individual brains or
even in intra-individual brain when explored at different times.
For example, Fig. 6A and B show eleven major human WM tracts
identified in the same brain, using a single diffusion imaging data
set, but two different tracking methods. These remarkable
algorithm-dependent differences within single brains have
imposed limits to the application of tractography for studying indi-
viduality and variation. Which algorithm should we use?

To approach these two issues, several methods have been
developed. For instance, methods such as Linear Fascicle Evalua-
tion (LiFE), have recently been proposed exploiting tractography
evaluation. LiFE takes as input the set of white-matter fascicles
generated using any tractography method and returns as output
the subset of fascicles that predict the DTI measurements with
smallest error. LiFE predicts diffusion measurements in individual
brains by representing connectomes as systems of linear equa-
tions. It models the diffusion signal using the prediction of the
combined WM fascicles in a connectome. Each fascicle is associ-
ated to a weight. Weights represent the contribution of fascicles
to predicting the measured diffusion.

Fascicle predictions are organized by LiFE as columns of a large
matrix of linear equations (M). The diffusion signal (Y) is predicted
by least-square optimization Y �Mwj jj j22 (Eq. (1)). M is a matrix
where each column is a single fascicle prediction of diffusion and
w are the set of weights assigned to each fascicle to predict the dif-
fusion measurements in all brain voxels (Y). The root mean square
error (r.m.s.) generated by the optimization (Eq. (1)) can be used to
compare connectome models. Fig. 6C shows a comparison of r.m.s.
error computed by LiFE for the two models in Fig. 6A and B. Errors
were computed on a single brain from the Human Connectome
Project (HCP) using LiFE and two different tractography methods:
a probabilistic tractography method based on constrained-
Fig. 6. The problem of tractography for precision connectomics. Major human WM trac
differ for a single individual. C. Comparison of the r.m.s. errors of the connectomes i
tractography (A) shows a smaller prediction error in a majority of voxels for this individ
spherical deconvolution (Fig. 6A), and a deterministic tractography
method based on the tensor model (Fig. 6B) using the HCP data (90
directions, b value = 2000 s/mm2).

Comparing connectome errors can be used to select the connec-
tome models that best represent the diffusion measurements in a
single individual. Better connectomes have lower error. The funda-
mental insight here is to use the r.m.s. error produced by LiFE to
establish the accuracy of a connectome in a single individual. This
error is proposed below as the foundation for developing a preci-
sion connectome science, a connectomic of the individual. Addi-
tional advances in methods for mapping structural connectomes
have more recently exploited similar statistical evaluation
approaches. Ensemble Tractography (ET; Takemura et al., 2016a),
for example, uses a large set of candidate connections generated
with multiple tractography algorithms to ‘learn’ the best connec-
tions, given the data; that best predict brain measurements.
Fig. 6C shows that the probabilistic tractography model is better
than the deterministic one in a majority of the voxels. Yet, the
probabilistic model is not better in all voxels. In some voxels, the
deterministic model does reasonably well. These are voxels where
the r.m.s. error is below the diagonal. This indicates that the deter-
ministic model is better in these few voxels. Thus, no single track-
ing method is always best – this insight motivated the
development of a multiple tractography method, Ensemble trac-
tography (ET). ET provides improvements over single-
tractography methods (STM). It is a new way of tracking that
exploits ensemble methods. ET (1) identifies more WM connec-
tions, (2) increases white matter volume coverage, (3) decreases
error in predicting the diffusion signal and (4) improves the
anatomical representation of the human WM. All enhancements
are achieved at standard data resolution. First, a set of single
parameter connectomes (SPC) is created, each generated using a
different tractography method (e.g., deterministic and probabilis-
tic) or parameter setting (e.g., fascicle curvature). All these SPCs
are combined into a single group. LiFE is used to find fascicle
weights and eliminate all fascicles with zero weight. The result is
the Ensemble Tractography Connectome (ETC) (Fig. 7).

ETCs consistently outperform SPCs. For example, the number of
non-zero weight fascicles is higher for ETCs than any tested SPC.
The proportion of total WM volume covered by the ETC is higher.
The ETC is more accurate (lower error) than any tested SPC. Maps
of the diffusion signal show better signal prediction by the ETC.
Finally, ETCs contain important anatomical features absent in SPCs
(Takemura et al., 2016b).

LiFE and Ensemble Tractography –or other modern methods–
can be used to build customized connectomes for individual brains.
ts generated using probabilistic (A) and deterministic (B) tractography algorithms
n A and B in predicting the diffusion signal using the LiFE method. Probabilistic
ual.



Fig. 7. Ensemble tractography (ET). Connectomes generated with multiple tracking
algorithms are merged. LiFE is used to ‘‘learn” from the data. The ET connectomes
contain all fascicles best contributing to predicting diffusion.
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A crucial element necessary to apply the methods on many indi-
vidual brains is the ability to run the methods routinely and effi-
ciently. To tackle this challenge, preliminary results for a sparse-
factorization method that drastically reduces the size of the LiFE
model are briefly presented; this Sparse Factorized LiFE model
(LiFESF) achieves accuracy quite close to the original LiFE, at a frac-
tion of the computational cost. The factorization approach is an
example of multivariate approaches that represent a new para-
digm with the potential to open new avenues of investigation for
computational neuroscience (McIntosh and Bratislav, 2013;
Cichocki et al., 2015).

Pestilli and colleagues developed a sparse multiway factoriza-
tion (Caiafa and Cichocki, 2013) to represent the LiFE matrixM effi-
ciently by combining a dictionary of precomputed diffusion
prediction (D) and an array (/) of voxels, fibers and diffusion pre-
dictions in D(Fig. 8A). The factorization approach compresses the
model by eliminating redundancies and precomputing diffusion
predictions. The approach can reduce the size of the LiFE model
by factors of 30 or above; e.g., from 30 GB to 1 GB (Fig. 8B). LiFESF
accurately approximates the original LiFE model (Fig. 8C). Prelimi-
nary results show that LiFESF (1) has r.m.s. error in predicting dif-
fusion identical to LiFE (Fig. 6C scatter plot); (2) reproduces the
LiFE matrix accurately (Fig. 6C top inset); (3) supports identical
connectome weights as the original LiFE (Fig. 8C lower inset).
The factorization method allows running the ET method routinely
on many brains at scale, and create rich databases of candidate
connections in individual brains that can be used to map variation
in connections across large human populations.

Whereas previous approaches to brain connectivity (as
described in the previous section) have focused on validating
results using either animal models or synthetic data, a recent trend
has been to use statistical approaches to evaluate results in indi-
vidual brains, one brain at the time. These approaches focus on
in-vivo brain measurements (for a review see Maier-Hein et al.,
2017;Rokem et al., 2017; Wandell and Le, 2017). Recently, new
approaches to evaluate and validate the results of tractography
Fig. 8. Factorization method for the LiFE model, memory efficiency & model accuracy. (A
by a 3D indicator array (/) and dictionary of diffusion predictions (D; colors indicate pr
reduces LiFE model size from over 30 GB of RAM per brain (old LiFE, low saturation symbo
is indistinguishable from the original LiFE. Insets. Errors in reconstructing fascicles‘weig
have been developed (Pestilli et al., 2014; Smith et al., 2014;
Daducci et al., 2015; Takemura et al., 2016a; Caiafa and Pestilli,
2017). These approaches have the potential to advance discovery
by providing mechanisms to evaluate and apply tractography to
the study of individual brains, by leveraging statistical and compu-
tational methods (Pestilli, 2015; Wandell and Le, 2017).

4. Techniques of measurement of brain function
[fMRI, EEG, MEG]

Perceptions and actions emerge from temporally coordinated
local brain activities at multiple sites in distributed neuronal net-
works (Engel et al., 1991; Singer and Gray, 1995; Classen et al.,
1998; Gerloff et al., 1998b; Singer, 1999a; Buzsaki and Draguhn,
2004; Engel et al., 2013; Bönstrup et al., 2014). This temporal coor-
dination of brain activity can be measured at multiple scales and in
distinct states of activation or rest with different metrics, each one
with its own advantages and disadvantages. The interpretation of
the measured signals is often challenging. In the human, EEG and
MEG allow for non-invasive measurement of neuronal firing at
high temporal resolution, i.e., in the range of milliseconds, how-
ever, with relatively low spatial resolution in the centimeter range.
Excellent spatial resolution is in the domain of functional MRI
(fMRI) which allows for the measurement of fluctuations of local
blood flow and metabolism through detection of blood-oxygena
tion-level-dependent (BOLD) changes of the magnetic field with
millimeter precision. Another advantage of fMRI is its capability
to detect activity changes in the depth of the brain much more reli-
ably than EEG or MEG. However, its temporal resolution is limited
due to physical properties of hemoglobin relaxation that intro-
duces a significant time delay between the synchronized and rela-
tively sharp neuronal firing and changes of local blood flow
producing the BOLD signal with a smoothing effect on the firing
sharpness during rise/decay times of the neurovascular reaction;
moreover –and probably more important– the BOLD signal is
based on changes of energy consumption and therefore it does
not reflect those mechanisms of communication among neuronal
assemblies which do not modify energy consumption (i.e. synchro-
nization/coherence, phase locking-unlocking without any change
of firing frequency/intensity). The spatial resolution of EEG and
MEG is poor due to the relatively small number of channels and
the non-uniqueness of the solution of the inverse problem; more-
over such techniques are little or no sensitive at all to activity in
neuronal assemblies located far from the scalp surface (either in
the depth of sulci, or in the fronto-orbital and temporo-mesial
areas including the hippocampal formation and insula) and/or
due to a neuronal architecture producing a closed field organiza-
tion like in subcortical nuclei. In the following survey (which has
) LiFESF model. The 2D matrix representation of LiFE (Pestilli et al., 2014) is replaced
ecomputed prediction signals for different directions of diffusion). (B) Factorization
ls) to 1 GB (saturated). (C) Scatter plot. LiFESF r.m.s. error in fitting the diffusion data
hts and LiFE model are extremely low.
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a focus on electrophysiological methods), commonly used
approaches and excerpts of their mathematical bases are
described, some caveats are mentioned, and hints towards their
interpretation are given.

4.1. Resting-state vs. task-related measurements

Historically, PET and fMRI allowed for describing some of
the ‘‘scaffolds” of functional brain connectivity; they include the
default mode, fronto-parietal, and dorsal attention networks. The
brain’s default mode network consists of discrete, bilateral and
symmetrical cortical areas, in the medial and lateral parietal, med-
ial prefrontal, and medial and lateral temporal cortices unexpect-
edly described in brain-imaging studies first performed with
positron emission tomography in which various novel, attention-
demanding, and non-self-referential tasks were compared with
quiet response either with eyes closed or with simple visual fixa-
tion (for a review see Raichle, 2015); the fronto-parietal network
is mainly involved in task monitoring and reporting (for review
see Koch et al., 2016); finally, the dorsal frontoparietal network
assumes a puzzling variety of functions, including motor planning
and imagery, mental rotation, spatial attention, and working mem-
ory (Ptak et al., 2017). In distributed networks, such as the
described ones, neuronal activity at rest shows distinct spatiotem-
poral patterns of oscillatory fluctuations (for review see Engel et al.,
2013). These so-called intrinsic coupling modes (ICMs) are of high
interest as they contain significant information, request little or no
changes of energy consumptions and have a meaningful spa-
tiotemporal structure. It is likely that in the healthy brain ICMs
reflect previous learning and can bias the processing of upcoming
stimuli. In addition, any perception or action will impose some sort
of (local or distant) synchronization, thereby altering the temporal
relationship between signals. As a consequence, directly or
stimulus-related (evoked) responses or oscillatory responses trig-
gered by and outlasting the stimulus (induced) can be measured.
All of them, ICMs and evoked or induced responses, can be
described with several mathematical approaches at the network
level. This type of neuronal coupling can be described in the time
or the frequency domain.

In their pioneering work, Gevins and colleagues have used time-
averaged evoked potentials and their temporal covariation in order
to describe simultaneous, connected EEG activity, so-called event-
related covariances (Gevins et al., 1989). In more recent years,
frequency-domain-based approaches have been more common in
the analysis of human EEG and MEG data. The degrees of freedom
of neuronal coding in the frequency domain are enhanced by the
wide range of cyclic firing that can be generated by neuronal
assemblies both in frequency (range between 0.025 and 600 Hz;
Bressler et al., 1993; Curio et al., 1994; Kandel and Buzsaki,
1997; Penttonen et al., 1999; von Stein and Sarnthein, 2000) and
in amplitude. Coding in and across different frequencies of oscilla-
tion is of particular interest for EEG and MEG analyses. The ICMs
are, at the very end of the very slow frequency spectrum (delta
and sub-delta), mirrored to some extent by fMRI resting-state sig-
nals, which are increasingly used to reconstruct human brain net-
works (Cordes et al., 2002; Fransson, 2005; Scholvinck et al., 2010).

4.2. Whole-brain approaches vs. hypothesis-driven analyses in subnets

Coherence (Coh) (Gerloff et al., 1998b), partial coherence
(pCoh), Phase-Locking Value (PLV) (Lachaux et al., 1999), Mutual
Information (MI) (Kraskov et al., 2004), and Directed Transfer Func-
tion (DTF) (Kaminski et al., 1995; Bönstrup et al., 2014) are com-
monly used mathematical techniques to address interregional
connectivity in EEG or MEG data. With respect to network nodes
and connections, they are primarily hypothesis-free and can be
used as whole-brain approaches. This is an advantage because it
allows for an unbiased global view on resting-state or task-
related changes in brain connectivity. However, this also carries
some risk of false-positive results, or, if strictly corrected for mul-
tiple comparisons, can lack statistical power to detect modulations
of subnets which are pivotal to a given function. An alternative is
Dynamic Causal Modeling (DCM, Friston et al., 2003) where the
modulation of interactions in preselected networks is analyzed.
While initially applied to fMRI, this concept has also been extended
to EEG/MEG (Kiebel et al., 2009). Of course, it is also possible to use
the aforementioned methods like Coh, pCoh, PLV, or DTF
hypothesis-driven on predefined networks with few nodes of
interest. In contrast, DCM is not suited as an exploratory technique.

4.3. Acquisition and processing of fMRI and EEG/MEG data for
connectivity analyses

4.3.1. Functional MRI (fMRI)
The use of functional MRI data relies on the blood-oxygenation

dependent (BOLD) signal. The magnitude of the BOLD signal
depends on multiple factors like, among others, the change in cere-
bral oxidative metabolic rate (CMRO2), the change in blood flow,
volume, and oxygen extraction rate (Bandettini, 2014). Simultane-
ous measurements of BOLD signal and electrical neuronal activity
indicate that the BOLD contrast reflects local field potentials
(summed postsynaptic potentials) rather than spiking activity of
neurons (Logothetis et al., 2001). MR scanners with 1.5 or 3 T field
strength are typically used to acquire the raw data. In order to co-
register the BOLD signals with individual anatomy, high-resolution
T1-weighted anatomical images of the brain are measured as well
(e.g., so-called MPRAGE). For functional imaging, gradient EPI
sequences are used. To measure the BOLD signal, a subvolume is
defined and, for example, one scan is acquired every 1–2 s. The
spatial resolution of fMRI is high. Typical voxel size is, for example,
4 � 4 � 4 mm but even smaller voxels are possible. The exact
settings vary depending on the experimental paradigm and the
scanner used. In addition to block designs (task on/off) and
event-related designs (time series of BOLD signal locked to single
behavioral events), resting-state fMRI (rs-fMRI, Biswal et al.,
1995) has gained much attention recently, especially with respect
to connectivity analysis. It has become evident that voxel-wise cor-
relations of BOLD signal time series contain information about the
functional organization of the brain. For rs-fMRI, spontaneous fluc-
tuations of the BOLD signal during rest are measured and analyzed
to reconstruct neural networks (for review see, e.g., Keilholz et al.,
2017). In general, fMRI data can be analyzed with various tools,
e.g., with the Statistical Parametric Mapping software (Welcome
Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.
ucl.ac.uk/spm), implemented in Matlab (The Mathworks Inc.,
Massachusetts, USA), or with BrainVoyager (Brain Innovation
B. V., Maastricht, The Netherlands, https://brainvoyager.com). The
strength of local activation in each voxel is typically calculated
by means of multiple linear parametric modeling with general lin-
ear models (GLMs) of the measured BOLD signal, using a canonical
synthetic hemodynamic response function (HRF).

4.3.2. EEG/MEG
EEG signals have been conventionally recorded from at least 19

scalp electrodes positioned according to the International 10–20
system, but the IFCN now suggests an extended array (see Seeck
et al., 2017). The higher the number of simultaneously recording
electrodes, the higher is the spatial resolution at least for sources
on brain convexity (and the correspondence between the recording
electrodes/sensors position and the functional relevance of the
underlying cortical areas), but the higher the computational needs.
The sampling rate of the EEG signal should be about four times the

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://brainvoyager.com
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analog bandwidth; thus, it is sufficient to sample at 512 Hz when
frequencies below about 130 Hz are investigated. If signals oscillat-
ing at 600 Hz are studied, a much wider bandwidth and higher
sampling rate must be used (up to several KHz). The monitoring
of eye movements can be obtained with two different EOG chan-
nels, vertical and horizontal; skin/electrode impedances of all
channels (this is an important issue only for EEG, but not for
MEG) should be kept in the kX range (preferably below 5 kX) to
minimize noise and external electromagnetic interference that
may cause artifacts.

Before digitization (sampling) the EEG signals must be band-
pass filtered so that the above-mentioned sampling-frequency rule
is satisfied. Artifacts represent another important source of biased
information. The digitized EEG data can be segmented to epochs
(e.g., 2 s) for visually identifying and rejecting visible artifacts
(i.e., eye movements, cardiac activity, and scalp muscle contrac-
tion); further, independent component analysis (ICA, a method
widely used also in fMRI analysis) is very effective for further arti-
fact rejection (Vecchio et al., 2017), but only provided that the arti-
facts are independent of the brain signals we wish to study. Thus,
stimulus-triggered artifacts and stimulus-evoked brain signals are
not generally fully separated by ICA, because they are not indepen-
dent. Data can be analyzed with a number of different Matlab
(MathWorks, Natick, MA) toolboxes, such as EEGLAB (Swartz Cen-
ter for Computational Neurosciences http://www.sccn.ucsd.edu/
eeglab). ICA in EEGLAB can be performed using the Infomax ICA
algorithm (Bell and Sejnowski, 1995).

While EEG is a powerful tool for measuring neuronal activity
and connectivity, the lack of spatial resolution could be a draw-
back: as said before, in fact, EEG but also MEG are not sensitive
to deep cortical activation. Inverse methods and approaches such
as BEANFORM in MEG and LORETA in EEG data claim to detect
deep sources but there is the possibility that a lot of information
from deep structures in the higher frequency domains could be
lost. Usually these methods allow to obtain good sources’ recon-
struction but it should be always taken considering their theoreti-
cal limitations.

4.4. Metrics of connectivity in EEG, MEG, and fMRI

4.4.1. Coherence
Coherence can be calculated for each frequency bin k according

to the equation:

Cohxy kð Þ ¼ Rxy kð Þ�� ��2 ¼ f xy kð Þ�� ��2
f xx kð Þf yy kð Þ

which is an extension of Pearson’s correlation coefficient (R) to
complex number pairs. In this equation, f xx and f yy are the
auto-spectra, and f xy is the cross-spectrum of two signals x and
y for a given frequency bin k (Gerloff et al., 1998b; Bönstrup
et al., 2018). Two nodes A and B (generating the signals x and
y, respectively) can exhibit coherent activity because of emergent
or stimulus/task/lesion-induced coupling of neuronal oscillatory
activity but they can also be coherent because both nodes receive
the same synchronizing input from a third node C (generating the
signal z). This could, in practical terms, be a higher-order cogni-
tive area or a lesioned brain section controlling two connected
brain regions in a top-down organization. Such scenario can be
probed by applying partial coherence analysis which provides a
measure of the coupling between two nodes, after taking into
account any linear interaction between two signals x and y and
a third signal z which can be referred to as ‘predictor’. Mathemat-
ically, the partial cross-spectra between x and y, with z as a pre-
dictor, are defined as:
f xy=z kð Þ ¼ f xy kð Þ � f xz kð Þf yz kð Þ
f zz kð Þ

where kis the frequency bin under study and f denotes the spectral
estimate of the EEG or MEG signals x, y, or z for a given frequency
bin k. The partial auto-spectra of x, with z being the predictor, are
defined as:

f xx=z kð Þ ¼ f xx kð Þ � f xz kð Þj j2
f zz kð Þ

The other partial auto-spectrum, fyy/z(k), is defined likewise.
The actual partial coherence between the signals z and y, with z

as a predictor, for the respective frequency bin k, pCohxy (k), can
then be estimated similarly to the ordinary coherence as:

pCohxy=z kð Þ ¼ Rxy=z kð Þ�� ��2 ¼
f xy=z kð Þ
��� ���2

f xx=z kð Þf yy=z kð Þ
Coherence as well as partial coherence provides a measure of

linear association, with values between 0 and 1. For example, if
Cohxy is high but pCohxy/z (after removing the ‘driving’ influence
of the third node C) is low, the interpretation would be that node
C contributes substantially to the coupling between nodes A and
B. If Cohxy and pCohxy/z are similar in magnitude, then a relevant
influence of node C cannot be assumed. This is a relatively straight-
forward approach to get an impression about functional network
interdependencies.

4.4.2. Mutual information
Mutual information (MI) is another metric of functional connec-

tivity and similarly addresses the interdependence between two or
more signals. However, in contrast to coherence, MI does not
assume linearity of the interaction between the signals, i.e., it mea-
sures the linear and non-linear relationships (Kraskov et al., 2004).
MI can be computed according to:

I X;Yð Þ ¼
X

y2Y

X
x2Xp x; yð Þ log p x; yð Þ

p xð Þp yð Þ
� �

where p(x,y) is the joint probability distribution function of the dis-
crete variables X and Y, and p(x) and p(y) are the marginal probabil-
ity distributions of these variables (Kumar et al., 2017). Of note,
functional connectivity measures like Coh, pCoh, or MI cannot dif-
ferentiate between direct and indirect connections. It is always pos-
sible that two regions of interest, showing high coherence, are not
connected at all but influenced by a third region. This needs to be
taken into account when interpreting the results.

4.4.3. Phase-locking value
Coherence cannot reliably separate amplitude and phase contri-

butions. The phase relationship between two signals independent
of the amplitudes of the respective signals can be quantified by
phase-locking statistics. To compute the PLV, bandpass-filtered
epochs are Hilbert-transformed, then the phase (u) of the
Hilbert-transformed data is extracted for all time bins (t), trials
(n = 1,. . ., N), and all electrodes (EEG), sensors (MEG), or sources
(EEG, MEG) if the calculations are done in the source space (e.g.,
after beamforming and spatial filtering). The difference of the
phases between two electrodes (Du) is then calculated at each
time point t. The phase-locking value (PLV) is defined as the consis-
tency of phase differences between two electrodes at a given time
point t; it measures the inter-trial variability of the phase differ-
ences (Lachaux et al., 1999; Aydore et al., 2013), according to:

PLVt ¼ 1
N

XN
n¼1

ejDuðtÞ
�����

�����

http://www.sccn.ucsd.edu/eeglab
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where:

DuðtÞ ¼ umk tð Þ �unk tð Þ
Here, k indexes the trial number andm and n index the first and

second channels of interest, always for a given time point t. The
PLV separates amplitude and phase, and is thus less affected by
amplitude variability of the power spectrum. PLV is less prone to
be affected by volume conduction which represents one of the
major confounding aspects for EEG (not for MEG) signal analysis.

4.4.4. Directed Transfer Function
From a physiological point of view, a matter of great interest is

directionality, i.e., which node leads or lags in the interaction. One
approach to address this is termed Directed Transfer Function
(DTF) and requires multivariate autoregressive (MVAR) modeling
of the epoched EEG (Kaminski et al., 1995) in the sense of Granger
causality. In brief, every time point of each channel is predicted by
the information that all the other channels’ time series at previous
time points offer. If knowledge of the past values of time series X
significantly improves prediction of time series Y, one can assume
that there is a causal relationship between them. However, it has to
be borne in mind that even if X does not influence Y but Y influ-
ences X, the measured past values of X generally improve the pre-
diction of Y, in particular if X is measured with a higher signal-to-
noise ratio than Y. Importantly, this relationship is not reciprocal
and thus allows assessing the direction of information flow
(Bönstrup et al., 2014). The time lag is predefined as the model
order. The MVAR model of order p can be described as:

Y
!

tð Þ ¼
Xp
k¼1

A kð ÞY! t � kð Þ þ XðtÞ��!

whereY
!

tð Þis the observed EEG data at channel Y and time t, X
!

tð Þ is
the so-called innovation process, and A(k) is the kth autoregressive
parameter, with p being the number of incorporated past time
points. This gives a matrix of parameters Ax,y(k) for each channel
combination and time lag. This can be transformed from the time
to the frequency domain in order to obtain derived measures in fre-
quency space, which then can be described according to:

DTFxy fð Þ ¼ Hxy fð Þ�� ��2Pn
y¼1 Hxy fð Þ�� ��2

where Hxy is the transfer matrix of the system. It contains informa-
tion about all relations between the signals of interest (including
phase relations). The DTFxy describes directional influences of chan-
nel x on channel y at frequency f. This directionality of information
flow can then be interpreted as causal influence of the ‘sending’
brain area on the ‘receiving’ brain area. Multivariate autoregressive
statistics can also be combined with the concept of partial coher-
ence, which is then referred to as partial directed coherence (see
e.g., Huang et al., 2016).

4.4.5. Dynamic causal modeling
The techniques and metrics described up to this point have pre-

dominantly been applied to electrophysiological signals, less so to
the slower modulations of the BOLD signal for fMRI (Arfanakis
et al., 2000; Xiong et al., 1999). Network analyses based on the
BOLD signal have been developed using multiple methods such
as ICA (Independent component analysis) related methods (for
reviews see: Bressler and Menon, 2010; van den Heuvel and
Hulshoff Pol, 2010; Avena-Koenigsberger et al., 2017) Among these
methods are the hypothesis-driven computation of interactions in
pre-defined networks derived from anatomical or functional a pri-
ori knowledge, such as structural equation or dynamic causal mod-
eling (Buchel and Friston, 1997, Penny et al., 2004).
Dynamic causal modeling (DCM) allows for addressing causal
interactions between distinct (predefined) brain regions by con-
structing and testing realistic models of interacting neuronal areas
(Friston et al., 2003). That is, away from a whole-brain approach
and hypothesis-independent testing of possible interactions, DCM
needs always to build on an extended a priori knowledge. DCM
aims at estimating the coupling between brain areas and how that
coupling is influenced by changes of the experimental context.
Starting from a neuronal model of interacting cortical regions,
DCM adds a forward model of how neuronal or synaptic activity
is transformed into a signal that can be measured by fMRI (BOLD)
or EEG (or MEG). For fMRI, this includes a hemodynamic response
model to explain how neuronal electric activity translates into
BOLD changes. Besides its use on fMRI data (Friston et al., 2003,
2011, 2014), DCM can also be applied to EEG and MEG data
(David et al., 2006, Kiebel et al., 2006). The multimodal use of
DCM for fMRI and DCM for induced responses in EEG/MEG
(DCM-IR) is challenging but–when the intrinsic differences of the
methods are carefully taken into account–it can generate mutually
confirmative results that might be more robust and give deeper
insights into cortical physiology than separately (Bönstrup et al.,
2016). Technically, in a Bayesian framework, DCM models the
instantaneous change of a neuronal state vector z based on a neu-
rodynamic forward model of how neuronal activity is transformed
into the measured response. This can be described by:

dz
dt

¼ Aþ
Xm
j¼1

ujB
ðjÞ

 !
zþ Cu

where t represents the continuous time and u the (jth) experimental
input. In DCM for fMRI, endogenous context-independent coupling
among the different regions is described by the so-called A-matrix.
Changes in coupling parameters that are caused by the experimen-
tal input (contextual modulators) are represented by the B-matrix.
Finally, the C-matrix specifies which regions receive exogenous
influences of inputs on neuronal activity. Parameters in the A, B
and C-matrices are estimated during the model inversion process
and describe the architecture and interactions among brain regions
at the neuronal level.

For DCM, the choice of a proper experimental design is crucial
because this approach was designed for explicitly testing specific
hypotheses rather than for using it as an exploratory tool. For
example, a straightforward experiment for DCM analysis would
be a sensory stimulation that is applied in multiple perturbated
ways in combination with another factor that changes systemati-
cally the context of the sensory-evoked responses. As Friston
pointed out in his original paper, the former could be a variation
of visually presented words and the latter could be either the cog-
nitive set or simply time (i.e., change of context by learning/plas-
ticity over time) (Friston et al., 2003). More recently, however,
also a DCM for resting-state data has been proposed (Friston
et al., 2014).

The model of DCM-IR (for MEG/EEG) assumes that the interac-
tions between two brain regions in the frequency domain can be
linear (within-frequency coupling) or non-linear (cross-frequency
coupling) (C.C. Chen et al., 2008). In this model, the neuronal state
vector z at region i is represented by spectral densities over k fre-
quencies according to:

zi f ; tð Þ ¼
zi f 1; tð Þ

� � �
zi f k; tð Þ

2
64

3
75

The event-related spectral signal changes are modeled as the
response of distributed coupled electric sources to a spectral per-
turbation (Bönstrup et al., 2016).
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In summary, DCM refers to ‘effective’ (causal) connectivity,
addressing directional interactions between brain areas. It necessi-
tates strict hypothesis-driven experimental designs and circum-
scribed, predefined neuronal network structures. In contrast,
coherence, partial coherence, phase-locking value, mutual infor-
mation analyses, or any other form of correlation analyses in the
time or frequency domain relate to ‘functional’ connectivity, i.e.,
metrics of neuronal coupling that do not allow for conclusions on
causal interactions or direct versus indirect pathways between
nodes of interest. Functional connectivity measures can be supple-
mented by information on directionality if combined with DTF or
other forms of MVAR-based computations (e.g., partial directed
coherence).

4.5. Functional connectivity analysis with LORETA

EEG recordings can be used for estimating the neuronal electri-
cal activity distribution (current density vector field) on the cortex.
Time series of cortical electrical neuronal activity can be analyzed,
for example, with the minimum-norm estimation method (MNE;
Hämäläinen and Ilmoniemi, 1994) or LORETA, to estimate cortical
connectivity, based on the following informal definition: ‘‘Two
places are functionally connected if their activity time series are simi-
lar” (Worsley et al., 2005). However, from a formal point of view,
there are many different ways to define similarity between signals.
Here, the ‘‘exact low resolution electromagnetic tomography” or
eLORETA method is introduced (Pascual-Marqui et al., 2011). The
eLORETA algorithm is a linear inverse solution for EEG signals that
has no localization error to point sources under ideal (noise-free;
error-free volume-conductor modeling) conditions (Pascual-
Marqui, 2002). The connectivity values are obtained by Lagged Lin-
ear Coherence algorithm as a measure of functional physiological
connectivity. Based on the scalp-recorded electric potential distri-
bution, eLORETA computes the cortical three-dimensional distri-
bution of current density (Pascual-Marqui, 2007a, 2009). Several
recent studies (Canuet et al., 2011; Barry et al., 2014; Aoki et al.,
2015; Vecchio et al., 2014a, 2014b; Ikeda et al., 2015; Ramyead
et al., 2015; Vecchio et al., 2015, 2016) supported the idea of an
accurate source localization using eLORETA. However, the
expected accuracy can be realized only if the assumptions (e.g.,
source being sufficiently point-like) of the sources are valid. Via
an individual analysis, brain connectivity is computed by eLORETA
in the regions of interest (ROIs) defined according to the available
Brodmann areas (BA) for left and right hemispheres (Talairach and
Tournoux, 1988). Intracortical Lagged Linear Coherence, extracted
by ‘‘all nearest voxels” or those in a sphere of 19-mm radius,
selected on the basis of the number of considered nodes
(Pascual-Marqui, 2007b; Pascual-Marqui et al., 2011), is individu-
ally computed between all possible pairs of ROIs for each EEG fre-
quency band (Kubicki et al., 1979; Niedermeyer and da Silva,
2005): delta, theta, alpha 1, alpha 2, beta 1, beta 2 and gamma.
eLORETA current-density time series of each BA can be used to
estimate functional connectivity; Lagged Linear Coherence (LagR)
algorithm has been implemented in eLORETA as a measure of func-
tional physiological connectivity not affected by volume conduc-
tion and low spatial resolution. For each EEG frequency, the
mean connectivity matrix is computed between all frequency bins
for each subject.

4.6. Describing network properties by graph-theoretical parameters

In order to describe properties of large, e.g., whole-brain net-
works the original empirical data can be represented in the form
of a graph. Graph theory has been widely applied to MRI tractogra-
phy (for a review see Crossley et al., 2016), but in this paragraph is
mainly reviewed for applications in EEG/MEG analysis. This graph
can be weighted or unweighted, and it can be directed or undi-
rected. The first step is to decide what can be considered as a node,
and what can be considered as a link (Stam, 2014; Miraglia et al.,
2017).

Core measures of graph theory can be computed with http://
www.brain-connectivity-toolbox.net and adapted by Matlab
scripts (Vecchio et al., 2014b; Miraglia et al., 2015, 2016). In such
scripts, segregation refers to the degree to which network elements
form separate clusters and correspond to clustering coefficient (C)
(Rubinov and Sporns, 2010), while integration refers to the capacity
of the network to become interconnected and exchange informa-
tion (Sporns, 2013); it is defined by the characteristic path length
(L) coefficient (Rubinov and Sporns, 2010). The mean clustering
coefficient is computed for all nodes of the graph and then aver-
aged. It is a measure for the tendency of network elements to form
local clusters (de Haan W et al., 2009). Starting by the definition of
L, the weighted characteristic path length Lw represents the short-
est weighted path length between two nodes (Onnela et al., 2005;
Rubinov and Sporns, 2010). Small-worldness (SW) parameter is
defined as the ratio between normalized C and L � Cw and
Lw �with respect to the frequency bands. For example, to obtain
individual normalized measures, one can divide the values of the
characteristic path length and of the clustering coefficient by the
mean values obtained by the average values of each parameter in
all EEG frequency bands of each subject. In this case, it should be
stressed that a normalization of the data with respect to surrogate
networks cannot be done due to the weighted values of the consid-
ered networks. The SW coefficient describes the balance between
local connectedness and global integration of a network. SW orga-
nization is intermediate between that of random networks, the
short overall path length which is associated with a low level of
local clustering, and that of regular networks or lattices, and the
high level of clustering which is accompanied by a long path length
(Vecchio et al., 2014b). This means that nodes are linked through
relatively few intermediate steps, and most nodes maintain few
direct connections. Surrogate analysis plays a pivotal role for test-
ing the significance of functional connections in both bivariate and
multi-variate estimators; it also represents a significant method-
ological approach when applying a data-driven topological filtering
scheme on statistically significant functional connections
(Moharramipour et al., 2018).

Currently, network science is developing along a sophistication
of network measures and models, introducing new concepts, such
as cost-efficiency, hierarchical modularity, vulnerability to random
or targeted attack, and the notion of rich clubs (as summarized in
Fig. 9). An important challenge is to find simple yet meaningful
ways to characterize brain networks while avoiding arbitrary
choices and in addition to extract new diagnostic measures or
biomarkers from network data (Stam, 2014).

Generally speaking, most of the studies on brain connectivity
with various techniques are relatively weak because they do not
report on inter- and/or intra-subject test-retest variability. In order
to evaluate the within-subject test-retest variability (Vecchio et al.,
2014a), statistical analysis was performed on normalized charac-
teristic path length of EEG cortical sources for a 10 subjects group
that accepted to come back for a second recording after about two
weeks, introducing the factor Time (First and Second recording ses-
sion). The statistical analyses showed no significant interaction
including Time, highlighting the stability of the present methodol-
ogy on ‘‘small world” analysis of EEG signal. More recently, find-
ings from 3 recording sessions have been compared from 34
healthy subjects (mean age of 45 years) at one week distance one
from the other. A between factors ANOVA was carried out:
Frequency Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, and
gamma) and Time (first, second and third recording) for the Small
World parameter. The statistical analysis showed that the

http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net


Fig. 9. Network science is developing along a network of measures and models, introducing new concepts, such as cost-efficiency, hierarchical modularity, vulnerability to
random or targeted attack, and the notion of rich clubs (from Vecchio et al., 2018).
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interaction including Time was not significant (F(12, 396)
= 0.48995, p = .92057), highlighting the stability of the proposed
parameters at least when carried out in clinically stable subjects.
Recently, the importance of reliability studies based on repeat-
scan sessions protocol of connectomics in any modality has been
recognized with publication of a number of freely available papers
and datasets (Zuo and Xing, 2014; Colclough et al., 2016;
Dimitriadis et al., 2017, 2018).

4.7. The added value of multimodal connectivity analyses

Non-invasive connectivity measures derived from EEG, MEG, or
fMRI, but also from various (i.e., paired-pulse non-invasive brain
stimulation) NIBS paradigms, naturally address ‘only’ certain
aspects of the actual neuronal network activity. EEG and MEG
depict population signals that closely resemble local field potential
activity. fMRI measures a very indirect signal, which is composed
of oxygen consumption and blood-flow changes as a reflection of
transient modifications of energy consumption following similar
changes in local neuronal firing. TMS probes responses elicited
by non-physiological activation of the stimulated neuronal popula-
tions. In all of these studies, anatomical constraints to network
structures should be taken into account. There are multiple ways
to get around spurious results and wrong conclusions, starting
with basic precautions like sufficient sample sizes and well-
controlled experimental variables. However, this cannot exclude
that the method selected has an inherent bias. For example, inter-
regional inhibitory interactions are readily detected by TMS tech-
niques (Gerloff et al., 1998a; Wahl et al., 2007), can regularly be
modeled by DCM for fMRI (Rehme et al., 2011), but are less easily
seen in EEG metrics (Bönstrup et al., 2016). Any network dynamics
of neuronal firing that occur at the millisecond time scale which
are separate, but adjacent in time will entirely or partly escape
blood-flow related measurements like fMRI (or positron emission
tomography or near-infrared spectroscopy) due to the time delay
between neuronal firing and BOLD signal production and it
smoothed rising/decaying slope unless they cause a secondary,
sustained net effect on neuronal activity over longer periods of
time (seconds to minutes at least); because of this, the time-
hierarchy of sources (nodes) connected in a network supporting
a given brain activity cannot be easily discriminated by
flow-metabolic techniques when the internode activation intervals
are too short. Similarly, network dynamics which do not require
changes in energy consumption (i.e. phase locking-unlocking with
a stable firing frequency) do not produce a BOLD signal in fMRI. In
fact, ‘coding by synchrony’ is possible in the absence of changes in
energy consumption and of significant net changes of averaged
neuronal population activity over time (Singer, 1999b). This
implies that selecting a priori networks on the basis of significantly
enhanced local activation may miss relevant network nodes. EEG
and MEG (or invasive electrophysiological methods with millisec-
ond resolution) better address this type of information coding in
neuronal networks. On the other hand, neurophysiological tech-
niques has a well-known limitation, that is the lack of information
about locations of the brain sources: coupling between scalp EEG
signals do not necessarily imply coupling between the underlying
neural sources of EEG. In fact, scalp EEG recordings reveal not only
averaged post-synaptic activity from localized cortical areas but
also the overlapping activity of all coherent neural sources situated
anywhere in the brain, together with the signal mixing owing to
the volume conductance and reference electrode: this makes the
interpretation of the sensor-space synchronization measures and
evaluation pf large-scale connectivity difficult. Moreover, as
repeatedly mentioned before, EEG and MEG are blind to most of
the subcortical neuronal activity, including subcortical-cortical
connections and those brain relays which are of paramount impor-
tance both in healthy and in diseased conditions like the hip-
pocampal formation, the temporo-mesial region and the limbic
areas. To minimize the bias inherent in each technique before
drawing extensive conclusions on the physiology of neuronal net-
works, it may therefore be advisable to integrate two or more tech-
niques –by carefully considering what they really reflect and do
not reflect in brain function- and attempt to arrive at interpreta-
tions that hold true independent of the network-probing technique
used. Mutually informative data have been derived from combina-
tions of EEG and fMRI (Bönstrup et al., 2016), MEG and fMRI
(Ahlfors et al., 1999), TMS and fMRI (Volz et al., 2014) but also from
TMS and structural MRI metrics like DTI (Wahl et al., 2007, 2016)
and many others (Nguyen et al., 2014; Klamer et al., 2015; Petro
et al., 2017). With respect to modeling of neuronal networks, e.g.,
coupled oscillator models, informing functional connectivity
matrices derived from EEG recordings integrated by structural
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information from DTI appears to be suitable and improves the
model quality (Finger et al., 2016).
5. Non-invasive brain stimulation (NIBS) methods for testing
brain connectivity

5.1. MEP, I-waves

The motor evoked potential (MEP) is recorded from a target
muscle by surface electromyography (EMG) and reflects the activa-
tion of corticospinal cells in primary motor cortex (M1) by single-
pulse transcranial magnetic stimulation (spTMS) (Barker et al.,
1985). Therefore, the MEP is a marker of the connectivity between
motor cortex, the alpha spinal motoneurons and muscle. The MEP
amplitude increases sigmoidally with stimulation intensity (Hess
et al., 1987; Devanne et al., 1997). Voluntary target muscle activa-
tion shifts this input-output curve to the left (Hess et al., 1987;
Devanne et al., 1997; R. Chen et al., 2008). It is important to note
that spTMS typically results in multiple descending corticospinal
volleys, an early D-wave (for direct activation) followed by I-
waves (for indirect, i.e., synaptic activation) (Amassian et al.,
1987). The neuronal mechanisms underlying the different I-
waves are still unclear (Ziemann and Rothwell, 2000; Triesch
Fig. 10. Prestimulus electroencephalography (EEG) connectivity patterns from M1 for th
The larger the MEPs, the larger is the functional coupling in d (inhibition) between M1 an
(from Ferreri et al., 2014; Vecchio et al., 2018).
et al., 2015). Several hypotheses are being discussed, ranging from
oscillating properties of the corticospinal cells to distinct circuits of
excitatory and inhibitory interneurons impacting on corticospinal
target cells (Kernell and Chien-Ping, 1967; Sakai et al., 1997; Di
Lazzaro et al., 1998a).

The multiple descending, stimulus-triggered volleys are spa-
tially and temporally integrated at spinal alpha motoneurons. If
the summed excitatory post-synaptic evoked potentials reach the
firing threshold, an action potential is generated that leads to exci-
tation of the corresponding motor unit. TMS at low intensity acti-
vates primarily small motor units that are also first recruited with
voluntary activation according with Henneman’s size principle
(Rossini et al., 1995). In summary, MEP measurements assess con-
nectivity between a pathway consisting of cortical interneurons,
cortico-motoneuronal neurons originating from layer V of M1,
and alpha motoneurons in spinal cord and muscle (Lemon, 2008).
Excitation of cortical interneurons and cortico-motoneurons is
controlled by inhibitory interneurons (Ilic et al., 2002; Kawaguchi
and Kondo, 2002; Markram et al., 2004). Therefore, MEP amplitude
is influenced by the balance of excitation and inhibition in M1,
which can be highly abnormal in neurological diseases and
affected by CNS-active drugs (Ziemann et al., 2015). Also, the
instantaneous state of M1 excitability impacts MEP amplitude, as
has been revealed by recent measurements that combined EEG
e ‘‘high” and ‘‘low” amplitude motor-evoked potentials (MEPs) in d and b rhythms.
d temporo-parietal nodes and b2 (facilitation) bands between M1 and frontal nodes
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recordings of endogenous brain oscillations and the underlying
connectivity networks with spTMS, as reported in previous papers
(Mäki and Ilmoniemi, 2010; Bergmann et al., 2012; Keil et al.,
2014; Ferreri et al., 2014; Giambattistelli et al., 2014; Triesch
et al., 2015; Zrenner et al., 2018), and summarized in Fig. 10
(Ferreri et al., 2014); moreover this impact is age dependent
(Ferreri et al., 2017a).
5.2. Paired-pulse TMS protocols

The paired-pulse TMS (ppTMS) protocols summarized here
(Fig. 11) are defined by two pulses delivered through the same
stimulating coil. These methods can be used to look at connectivity
between neurons in a cortical column or in close neighboring brain
areas. Stimulating over the motor cortex, if the first (conditioning)
pulse is subthreshold for M1 excitation, the second (test) pulse
suprathreshold, and if the interstimulus interval (ISI) is 1–5 ms,
then the test MEP is inhibited, (short-interval intracortical inhibi-
tion; SICI Kujirai et al., 1993). SICI can be elicited by first pulses
of very low intensity, indicating that, according to a ‘‘cortical size
principle”, small inhibitory interneurons are activated and mediate
this effect (Kujirai et al., 1993; Ziemann et al., 1996; Ilic et al.,
2002). This is supported –at the ‘micro’ connectivity level– by
pharmacological studies that reported increase of SICI by benzodi-
azepines, i.e., positive allosteric modulators at GABAA receptors
(Ziemann et al., 2015). However, zolpidem with selective affinity
to the alpha-1-subunit-bearing subtype of the GABAA receptor,
did not enhance SICI (Di Lazzaro et al., 2007), strongly suggesting
that SICI is largely mediated by the alpha-2-subunit-bearing sub-
type of the GABAA receptor and, therefore, by Chandelier cells that
make predominantly synaptic contacts with the pyramidal cells
axonal hillock (Kawaguchi and Kondo, 2002).

Experiments with two coils on top of each other demonstrated
that SICI is local, i.e., it rapidly declined when moving the stimulat-
ing coil delivering the first stimulus away from the motor hot spot
(Ziemann et al., 1996). Furthermore, SICI was independent of the
orientation of the coil delivering the first stimulus, suggesting that
Fig. 11. Markers of effective connectivity assessed by paired-pulse TMS protocols. TP: tes
SAI: short-latency afferent inhibition; ICF: intracortical facilitation; SICF: short-interva
interval intra-cortical inhibition; LCD: late cortical disinhibition.
the activated inhibitory interneurons do not have specific
excitability characteristics linked to a particular stimulus orienta-
tion (Ziemann et al., 1996). Altogether, a bulk of scientific findings
support –including epidural recordings– the concept that SICI is a
marker of effective connectivity between local inhibitory interneu-
rons and cortico-motoneuronal cells, and/or the excitatory pyrami-
dal cells projecting onto cortico-motoneuronal cells (Di Lazzaro
et al., 1998b; Ilic et al., 2002).

A ppTMS protocol with longer ISIs of 7–15 ms typically results
in MEP facilitation, referred to as intracortical facilitation (ICF)
(Kujirai et al., 1993; Ziemann et al., 1996) which is supposed to
be a marker of effective connectivity between excitatory interneu-
rons and cortico-motoneuronal cells.

A ppTMS protocol that uses a suprathreshold first and a sub-
threshold second stimulus (Ziemann et al., 1998), or two threshold
stimuli (Tokimura et al., 1996) at short ISIs of 0.5–4.5 ms results in
MEP facilitation at discrete ISIs of 1.1–1.5 ms, 2.3–2.9 ms and 4.1–
4.5 ms, with no significant facilitation in between (Ziemann et al.,
1998). This is referred to as short-interval intracortical facilitation
(SICF) with 3 peaks having an inter-peak interval of approximately
1.5 ms (equivalent to 660 Hz) reminiscent of the interval separat-
ing two successive I-waves (see above Ziemann and Rothwell,
2000, Ziemann et al., 1998).

A ppTMS protocol that uses two suprathreshold pulses at ISIs of
50–150 ms results in MEP inhibition and is referred to as long-
interval intracortical inhibition (LICI) (Valls-Sole et al., 1992). LICI
is enhanced by baclofen, a selective agonist at the GABAB receptor
(McDonnell et al., 2006); moreover, LICI duration is compatible
with GABAB receptor-mediated inhibitory post-synaptic potentials
(Connors et al., 1988). Evidence strongly suggests that LICI is a
marker of effective connectivity between inhibitory interneurons
and cortico-motoneuronal cells and/or the excitatory pyramidal
cells projecting onto cortico-motoneuronal cells, through the
GABAB receptor (Di Lazzaro et al., 2002).

The same ppTMS protocol of two suprathreshold pulses at ISIs
of around 200–250 ms results in MEP facilitation, termed late cor-
tical disinhibition (LCD) (Cash et al., 2010, Cash et al., 2011). The
t pulse; CP: conditioning pulse; *ES: electric stimulation; ISI: interstimulus interval;
l intracortical facilitation; SICI: short-interval intracortical inhibition; LICI: long-
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mechanism underlying LCD is likely GABAB receptor mediated
presynaptic autoinhibition of GABAAergic inhibitory interneurons,
as has been demonstrated in paired-pulse depression experiments
(Deisz, 1999). Importantly, it was also shown that the duration of
GABAB receptor mediated inhibitory post-synaptic potentials is
shorter than the pre-synaptic autoinhibition (Deisz, 1999). In sum-
mary, LCD likely is a marker of GABABergic pre-synaptic autoinhi-
bition of inhibitory interneurons in M1.

Finally, peripheral nerve electrical stimulation (e.g., of the med-
ian nerve at the wrist) followed by suprathreshold spTMS of con-
tralateral M1 provokes a MEP inhibition at ISIs of the individual
N20 wave latency of the median nerve somatosensory evoked
potential plus 0–4 ms while MEP facilitation is observed with ISIs
of N20 wave latency plus 6–10 ms (Mariorenzi et al., 1991;
Tokimura et al., 2000). The MEP inhibition is referred to as short-
latency afferent inhibition (SAI), and is associated with reduction
of late I-waves but not the I1-wave in epidural spinal recordings
(Tokimura et al., 2000).

5.3. Paired-coil TMS protocols

Paired-coil TMS (pcTMS) protocols deliver TMS pulses through
separate coils to different sites of the brain and enable investiga-
tion of effective connectivity/mutual influence between separate
brain areas; M1 and other, typically motor-related, areas of the
brain, such as the contralateral M1, other frontal or parietal areas,
and the cerebellum have been investigated by this technique
(Hallett et al., 2017). In the pcTMS protocols, one stimulating coil
is placed over the target M1 to elicit the test MEPs, and another
one over a different area to test the effect of conditioning pulses
on test MEP amplitude. Key parameters are timing and intensity
of the conditioning stimulus (CS), in addition to placement of the
conditioning TMS coil. Test stimulus (TS) intensity can also have
an impact on the results.

A suprathreshold CS delivered to the M1 on one side given at ISI
of 6–30 ms prior to TS of the contralateral M1 results in inhibition
of the test MEP (Ferbert et al., 1992). Maximum inhibition occurs at
an ISI of around 10 ms, later termed short-latency interhemi-
spheric inhibition (SIHI), which is mediated by transcallosal fibers
projecting onto inhibitory interneurons in the test M1(Ferbert
et al., 1992; Daskalakis et al., 2002; Kukaswadia et al., 2005;
Müller-Dahlhaus et al., 2008; Ni et al., 2009; Tsutsumi et al.,
2012). In addition to SIHI, other interhemispheric interactions have
been reported, in particular, long-latency interhemispheric inhibi-
tion (LIHI) and interhemispheric facilitation (IHF). Except for the
ISI, which is typically around 40–50 ms (Gerloff et al., 1998a), LIHI
can be tested in the same way as SIHI. LIHI is believed to be medi-
ated by a different mechanism compared to SIHI. Although both
seem to be associated with GABAB receptor mediated inhibition
(Daskalakis et al., 2002; Kukaswadia et al., 2005), only LIHI is
related to the ipsilateral silent period, another spTMS measure of
interhemispheric inhibition (Chen et al., 2003). In summary, it is
currently thought that SIHI, LIHI and IHF are mediated through glu-
tamatergic excitatory transcallosal M1-M1 connections, and that
interhemispheric inhibition occurs through activation of inter-
posed inhibitory interneurons in the M1 of the test hemisphere
(Daskalakis et al., 2002; Ni et al., 2009).

Conditioning stimulation of various other cortical areas such as
dorsal premotor cortex (PMd), ventral premotor cortex (PMv), sup-
plementary motor area (SMA; Oliveri et al., 2003), and posterior
parietal cortex (PPC) can also affect MEP amplitudes elicited by
TS of the test M1. Anatomical connectivity of these areas with
M1 is reported in animal studies (Muakkassa et al., 1979; Ghosh
et al., 1987; Ghosh and Porter, 1988; Luppino et al., 1993;
Stepniewska et al., 1993; Tokuno et al., 2000; Dum and Strick,
2005; Dea et al., 2016; Quessy et al., 2016), providing the rationale
for testing effective connectivity in humans using pcTMS protocols.
Since the ipsilateral PMd is adjacent to M1, revealing ipsilateral
PMd–M1 connectivity was not straightforward due to difficulties
in placing two coils appropriately on the scalp (Civardi et al.,
2001; Koch et al., 2007b; Bäumer et al., 2009). More recently,
Groppa et al. (2012) introduced a specially designed small coil with
decentralized coil windings to overcome this problem, reporting
MEP facilitation if CS was given 2.4–2.8 ms or 4.4 ms after the TS.
In contrast, there is cumulative evidence on inhibitory effective
connectivity between the contralateral PMd and M1. Mochizuki
et al. reported MEP inhibition if the CS was given 8 ms prior to
the TS (Mochizuki et al., 2004), which was confirmed by subse-
quent studies (Koch et al., 2007b, Ni et al., 2009

The SMA is another important secondary motor area, with pre-
dominantly facilitatory projections to M1 (Tokuno et al., 2000).
Congruent with this observation, two pcTMS studies reported
MEP facilitation by SMA conditioning. Arai et al. (2012) used a
highly focal small CS coil over SMA to avoid current spread to
the M1, and reported that relatively strong CS (140% of active
motor threshold) resulted in MEP facilitation at an ISI of 6 ms. This
facilitation was coil-orientation specific and observed only if the
induced current in the brain was directed from medial-to-lateral
towards the stimulated SMA. Using a weaker CS, another study
showed no effect on MEP amplitude but a facilitatory effect on SICF
(Shirota et al., 2012) providing evidence that conditioning stimula-
tion of SMA interacts with the excitatory interneuron circuitry in
M1 responsible for the generation of I-waves.

PPC is a part of the fronto-parietal network that is important for
visuomotor planning. Koch et al. revealed MEP facilitation at an ISI
of 4 ms, specifically at a CS intensity of 90% resting motor thresh-
old, but not at lower or higher CS intensities (Koch et al., 2007a).
A more recent study revealed both facilitatory and inhibitory effec-
tive connectivity, dependent on the exact PPC stimulation site
(Karabanov et al., 2013), suggesting that different sub-divisions
of the PPC play diverse roles in the fronto-parietal network.

For conditioning stimulation of the cerebellum, the main target
is the cerebello-dentato-thalamo-motor cortical pathway. Within
this network, Purkinje cells in the cerebellar cortex send inhibitory
input to the dentate nucleus, which in turn has a di-synaptic exci-
tatory connection with the contralateral M1 through the ventrolat-
eral nucleus of the thalamus with a net inhibitory effect (Ito et al.,
1970; Allen and Tsukahara, 1974). Ugawa et al. (1991, 1995) were
the first to report cerebellar inhibition (CBI), probably activating
this pathway. CBI is observed when the CS to the cerebellum pre-
cedes the TS of contralateral M1 by 5–7 ms, with a typical CS inten-
sity of 90–95% of the active motor threshold to directly activate the
pyramidal tract at the level of the pyramidal decussation using the
double-cone coil. This hypothesis of net effect was approved by
several cerebellar stimulation studies in patients with ataxia
(Ugawa et al., 1994, 1997). A focal figure-of-eight coil would pre-
dominantly activate peripheral components of the cervico-
brachial plexus near the coil rather than the cerebellum, resulting
in another type of inhibition starting at slightly longer ISIs (7–
8 ms) than the CBI, and potentially contaminating CBI at these
longer ISIs (Werhahn et al., 1996). With enough caution about
these factors, CBI can provide a unique opportunity to test effective
connectivity from cerebellum to contralateral M1 through the
cerebello-dentato-thalamo-motor cortical projection.

The recently developed multilocus TMS (mTMS; Koponen et al.,
2018), which allows one to electronically adjust the location of the
stimulated cortical location, will enable new kinds of pcTMS
thanks to the possibility to stimulate also close-by cortical targets
at programmable time intervals and intensities. Preliminary results
show that (Nieminen et al., 2017) short-distance (0–30 mm) or lat-
eral inhibition depends both on ISI and the distance between CS
and TS targets.
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5.4. Combined TMS approaches for testing cortico-cortical effective
connectivity

Effective connectivity includes a definition of causality, which
cannot be provided by techniques like high-density EEG and fMRI
per se. Obtaining measures of effective connectivity with high-
density EEG requires in fact complex causal models based on
pre-existing data and the inferential power of such techniques on
cortical effective connectivity relies on a priori assumptions about
the involved network and the validity of the implemented model.
In this perspective on the other hand, brain responses to TMS are
intrinsically causal (Paus, 2005) even if not entirely ‘‘natural” and
behavioral effects that follow the perturbation may be immedi-
ately detected/reported. Then, the online combination of EEG with
TMS, due to the ability of EEG to detect changes of neuronal activ-
ities evoked by magnetic perturbation in a timescale of millisec-
onds, can return unprecedented hints on the functional
properties of human cortical circuits in health and disease
(Siebner et al., 2009; Ziemann, 2011).

Only when a TMS-compatible EEG amplifier is employed, elec-
tromagnetic artifacts caused by the TMS discharge are prevented
(Virtanen et al., 1999; Ilmoniemi and Kičić, 2010). Besides the elec-
tromagnetic TMS-evoked artifacts, TEPs can reliably reflect gen-
uine responses of cortical circuits to TMS provided that biological
artifacts, such as somatosensory or auditory evoked potentials,
are appropriately reduced or abolished (Gosseries et al., 2015)
and state-of-the-art methodologies are applied to minimize con-
founding factors (Casarotto et al., 2010; Rogasch et al., 2014).
Moreover, the TMS-evoked muscle artifacts constitute a major
challenge with TMS–EEG when areas below cranial muscles are
stimulated (Mutanen et al., 2013) as well as secondary to reflex
muscle responses due to cranial nerves excitation. A large number
of studies have been published as to how these artifacts could be
filtered from the signal. One attractive alternative is Independent
Component Analysis (ICA; Korhonen et al., 2011), but it suffers in
this context from the fact that TEPs and muscle artifacts are not
independent. Fortunately, more effective methods have been
developed to solve the problem (e.g., Mäki and Ilmoniemi, 2011;
Ilmoniemi et al., 2015; Mutanen et al., 2018). Finally, in order to
obtain reproducible and reliable TMS–EEG measurements, it is
necessary to use a neuronavigation system that allows to precisely
target desired cortical locations, to keep the stimulation parame-
ters constant over different sessions (Casarotto et al., 2010;
Hannula and Ilmoniemi, 2017). TEPs can be used to reliably keep
track of cortical excitability and effective connectivity in both
research and clinical settings (Ziemann, 2011; Rossini et al., 2015).

Once the appropriate equipment is employed and the correct
experimental procedures are implemented TMS–EEG coregistra-
tion (Cracco et al., 1989; Ilmoniemi et al., 1997) contributes esti-
mating fundamental indices of cortical functioning (Bonato et al.,
2006; Ilmoniemi and Kicic, 2010; Rogasch and Fitzgerald, 2013)
and discriminating causal interactions from mere temporal
correlations.

TMS-evoked EEG potentials (TEPs) occurring in the first 20–
40 ms after the TMS pulse most likely reflect the responses of cor-
tical circuits excited underneath the stimulator (Mueller et al.,
2014; Li et al., 2017). On the contrary, later TEPs result from the
propagation of the initial response to TMS to remote cortical cir-
cuits (Massimini et al., 2005; Bonato et al., 2006; Ferreri at al.,
2011). Thus, to keep track of cortical excitability, defined as the
electrical reactivity of the cerebral cortex to a direct perturbation,
one should measure the slope and amplitude of the very early TEPs.
To capture more global features of cortical excitability, the analysis
of TEPs could be carried out also in the frequency and time-
frequency domains. More in detail, TMS–EEG studies showed that
the human cerebral cortical areas react differently during non-REM
slow wave sleep compared to wakefulness (Massimini et al., 2005;
Bergmann et al., 2012), that cortico-thalamic modules generate
electrical responses with a regionally specific natural frequency
(Rosanova et al., 2009; Ferrarelli et al., 2012), that cortical
excitability changes are ‘naturally’ present during the day (Huber
et al., 2013; Ly et al., 2016), during cortical development (Määttä
et al., 2017) and physiological aging (Ferreri et al., 2017b). More-
over, TEPs are affected by CNS-active drugs (Premoli et al., 2014;
Darmani et al., 2016; Premoli et al., 2017; Casarotto et al., 2019),
alcohol use (Kähkönen et al., 2001) and abuse (Kaarre et al.,
2018), and by psychiatric and neurological disorders, such as
schizophrenia (Ferrarelli et al., 2012), depression (Canali et al.,
2015), Alzheimer’s disease (Casarotto et al., 2011; Ferreri et al.,
2016), or epilepsy (Kimiskidis et al., 2017).

Since the beginning, TEPs were used to measure cortico-cortical
connectivity, such as interhemispheric propagation time (Cracco
et al., 1989). However, measuring effective connectivity within cor-
tical circuits by means of TMS–EEG is challenging since the local
and remote cortical responses to TMS arise from excitation of
axons in both orthodromic and antidromic directions regardless
of their physiological ‘‘directionality” (Ilmoniemi and Kicic,
2010). Most important, localization of scalp EEG potentials is
strongly affected by electrode positioning for TEP recordings and
volume conduction and may lead to computation of wrong connec-
tivity patterns (van den Broek et al., 1998; Cohen, 2017). For this
reason, a reliable assessment of cortical effective connectivity must
be conducted at the level of cortical sources that generate TEPs
(Schoffelen and Gross, 2009). For instance, in the first seminal
TMS–EEG study (Ilmoniemi et al., 1997), TEPs after stimulation of
the primary motor and visual cortical areas were analyzed at the
scalp and cortical levels providing the first non-invasive measures
of cortical excitability and effective connectivity in humans. Later
on, using a similar approach, Massimini and colleagues observed
that cortical effective connectivity collapses in healthy subjects
during non-REM slow wave sleep, when consciousness physiolog-
ically fades away, despite preserved cortical excitability
(Massimini et al., 2005). The same research group has developed
a semi-automatic procedure to analyze TMS-EEG data, which pro-
vides three indices as readouts: significant current density (SCD),
phase-locking (PL), and significant current scattering (SCS) (Casali
et al., 2010). They showed that cortical effective connectivity
breaks down during unconscious states induced by deep sedation
(Ferrarelli et al., 2010; Sarasso et al., 2015) or by severe brain
lesions (Rosanova et al., 2012; Ragazzoni et al., 2013; Rosanova
et al., 2018). Accordingly, indices of cortical effective connectivity
based on TMS–EEG measurements recover when consciousness
returns, but behavioral responses are still absent or inconsistent,
such as during dreaming (Massimini et al., 2010), ketamine anes-
thesia (Sarasso et al., 2015), Minimally Conscious State (MCS),
and emergence from MCS (Fig. 12; adapted from Rosanova et al.,
2012).

Another metric derived from TMS–EEG measurements is able to
detect the joint presence of cortical differentiation and cortical
integration (Casali et al., 2013). The index, termed Perturbational
Complexity Index (PCI) is computed in two steps: (i) a perturbation
of the cortex with TMS to trigger causal and distributed interac-
tions within brain circuits (ii) a compression of the cortical
responses computed at the source level to measure their algorith-
mic complexity (Casarotto et al., 2016).

Assessment of cortical effective connectivity based on TMS–EEG
recordings can also be applied to address cognitive neuroscience
issues such as the mechanisms underlying attention shifts
(Morishima et al., 2009), or the modulation of language circuits
by other non-invasive brain stimulation techniques (Pisoni et al.,
2018). On the same line, future studies should fully exploit the
potential of TMS–EEG to extensively and automatically map corti-



Fig. 12. Cortical responses to TMS across recovery in a patient evolving from vegetative/unresponsive wakefulness syndrome (VS/UWS, black arrow) to a minimally conscious
state (MCS, blue arrow), then to emergence of MCS (EMCS, red arrow) as assessed by the Coma Recovery Scale-revised (CRS-R). The figure illustrates both the spreading over
the cortical mantle and the time-courses of cortical currents after a TMS pulse when stimulating parietal (top) and frontal (bottom) cortical targets (white crosses). In VS/
UWS, the response is local and simple, while involves different cortical sources at different times in MCS and EMCS. Figure adapted from Rosanova et al. (2012).
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cal circuits (Harquel et al., 2016) in order to measure effective con-
nectivity in dysfunctional brains (Ferrarelli et al., 2008, Adhikari
et al., 2017). This approach can hopefully pave the way to novel
rehabilitative treatments for brain disorders that will be aimed at
promoting adaptive rather than maladaptive processes in response
to neurological or psychiatric diseases (Fornito et al., 2015).

A major challenge with TMS–EEG is constituted by the huge
muscle artifacts when areas below cranial muscles are stimulated
(Mutanen et al., 2013) as well as secondary to reflex muscle
responses due to cranial nerves excitation. A large number of stud-
ies have been published as to how these artifacts could be filtered
from the signal. One attractive alternative is Independent Compo-
nent Analysis (ICA; Korhonen et al., 2011), but it suffers in this con-
text from the fact that TEPs and muscle artifacts are not
independent. Fortunately, more effective methods have been
developed to solve the problem (e.g., Mäki and Ilmoniemi, 2011;
Ilmoniemi et al., 2015; Mutanen et al., 2018).

Another TMS approach is its combination with fMRI for the
exploration of connectivity. As compared to EEG, relevant advan-
tages of TMS-fMRI include better spatial resolution, and the option
to explore also cortico-subcortical connectivity with enhanced reli-
ability. The main shortcoming of TMS-fMRI is however its rela-
tively poor temporal resolution, which limits opportunities to
explore fast oscillation-based dynamic alterations of connectivity
with this technique. This does however not exclude to obtain infor-
mation about dynamic task-related alterations of connectivity in
general, as shown for motor cortical networks (Bestmann et al.,
2008), but also the interplay between large-scale network interac-
tions relevant for cognitive and emotional processing (Chen et al.,
2013). Thus both tools fulfill partially complimentary needs,
regarding exploration of functional connectivity in the human
brain, and combination of EEG with fMRI and brain stimulation
might be a future direction worthwhile to explore.

Repetitive (rTMS) and patterned type TMS (i.e. theta-burst TMS)
is now considered an advantageous probe to test brain networks
underlying cognitive functions since the use of TMS follows the
rule of inference. If cortical area A is involved in cognitive process
B and is not involved in process C, perturbation of the activity of
area A will result in altered performance in B and not C. Thus, for
deductive reasoning, area A plays a causal role in the performance
of B. Moreover, TMS can be safely repeated in subjects on different
occasions, eventually allowing an intra-lab or between-lab retest of
a given experimental hypothesis. Finally, in some specific fields, as
memory tasks requiring a two-stage cognitive process (i.e., encod-
ing and later retrieval of items), TMS allows to tease apart the
effects on one of these two tasks more easily than in the case of
lesion studies (e.g., Rossi et al., 2001, 2004).

Because information processing of higher brain functions is
integrated within several parallel distributed networks involving
‘‘nodes” in many cortical areas, a single pulse is often inadequate
to interfere with the brain activity at a behaviorally relevant level,
although a very first example of TMS use outside the motor cortex
used single pulses to transiently suppress the visual perception, by
stimulating the occipital cortex about 80–100 msec after the pre-



1852 P.M. Rossini et al. / Clinical Neurophysiology 130 (2019) 1833–1858
sentation of the visual stimulus (Amassian et al., 1989) or produc-
ing a transient ‘‘neglect” to a sensory hand stimulation (Oliveri
et al., 1999, 2000). In this context TMS may be used as a tool to
investigate and understand the role and timing of the involvement
of a target area in a specific performance (Walsh and Cowey, 2000),
the contribution of different sites to different aspects of a cognitive
function (Terao et al., 2001; Robertson et al., 2003), the relative
timing of the contribution of two or more areas to task perfor-
mance and the function of intracortical and transcallosal connec-
tivity (Jahanshahi and Rothwell, 2000). In short, what
information is processed in a given brain network, and when does
this processing occur. In general, the possibility of understanding
the location, timing (i.e., cognitive chronometry) (Walsh et al.,
2006) and functional relevance of a given node activity within a
network underlying cortical functions makes rTMS an essential
technique mainly in perception and cognitive research.

In general, it should be taken into account that at present the
application of non-invasive brain stimulation approaches – includ-
ing TMS, but also tDCS/tACS, which is introduced in the next sec-
tion – to explore functional connectivity is still in its early days.
Major approaches include exploration of spatio-temporal maps of
brain activity alterations elicited by stimulation of a specific area,
and refer to the whole brain, or specific interactions between a
seed region of interest, and remaining structures. Network stimu-
lation involving not only stimulation of a single hub, which indi-
rectly alters network activity, but of a larger set of relevant areas,
has rarely been conducted. Double coil approaches for TMS, and
specific tACS protocols (see below) are exceptions, and might pave
the way to more complex brain stimulation protocols in future to
explore the dynamics and causality of functional connectivity in
larger detail.

5.5. tDCS and tACS

Tonic or oscillatory stimulation with weak electrical currents,
labelled transcranial direct and alternating current stimulation
(tDCS, tACS), which are subsumed under the general term transcra-
nial electrical stimulation (tES), induces alterations of cortical
activity and excitability via subthreshold modulation of neuronal
membrane potentials; prolonged stimulation can generate neuro-
plastic after-effects (Nitsche et al., 2008; Stagg and Nitsche,
2011). However, tES can be also valuable in inducing and probing
connectivity of the human brain, including its relevance for psy-
chological and behavioral processes. Hereby, (a) controlled modu-
lation of regional cortical activity and excitability by tES in
combination with neuroimaging or TMS can reveal specific func-
tional connections of the targeted areas, (b) combination of stimu-
lation with cognitive or motor processes and neuroimaging
approaches can reveal the relevance of the targeted area for task-
related functional connections, and (c) tES based on connectivity
data obtained during task performance can be used to explore
the causal relevance of respective connections for performance.

For revealing functional connections of a targeted cortical area
tDCS studies have been conducted, mainly to explore motor net-
work connectivity. Combination of tDCS with fMRI showed that
activation of the primary motor cortex via tDCS enhanced func-
tional connectivity of this target area with the premotor, and pari-
etal cortex, but also with subcortical areas like the ipsilateral
thalamus (Polania et al., 2011b, 2012b). Furthermore, combining
tDCS with TMS demonstrated that tDCS over the premotor cortex
can alter SICF and SICI presumably by altering premotor-M1 con-
nectivity, while corticospinal excitability as tested by single-
pulse TMS over M1, which most likely is elicited by stimulation
of intrinsic pyramidal tract neurons, was not altered (Boros et al.,
2008). Similar effects on M1 excitability, tested by alterations of
parieto-motor effective connectivity by a double coil approach,
were revealed for posterior parietal cortex tDCS (Rivera-Urbina
et al., 2015). One advantage to use brain stimulation approaches
such as tDCS to probe connectivity is their specificity, i.e., the
restrictedness of stimulation to a pre-defined target area, as com-
pared to task-related activation, which in most cases goes along
with multi-modal brain area activation. This requires, however,
specific intervention protocols, including computational model-
based stimulation approaches, and use of small area electrodes
(which, however, decreases the depth and amount of current
reaching the underlying cortex). Unfortunately, most of the studies
did not use a control condition exploring eventual effects of real
stimulation of a non-target brain area in order to demonstrate a
site-specific effect. Taking these caveats into account, relative
specific effects of the stimulation, dependent on electrode position,
can be expected, and help to define connectivity of the targeted
brain network (Nitsche et al., 2007; Boros et al., 2008; Rivera-
Urbina et al., 2015). Beyond these purely physiological measures,
tDCS can also be used to explore the relevance of a targeted area
for task-related connectivity. The concept here is to modulate
activity and/or excitability of the target area, and then to explore
effects on task-related functional connectivity by functional imag-
ing approaches. Polania et al. (2011a) conducted an experiment, in
which resting state EEG and task-related EEG during finger tapping
were obtained before and after anodal tDCS over the primary
motor cortex. They showed that tDCS alone had only minor effects
on connectivity of the resting state EEG, but that task-related con-
nectivity, specifically in the high gamma frequency band, between
motor, premotor, and sensorimotor areas were enhanced after
tDCS. For all other frequency bands, the tDCS effects on connectiv-
ity were less clear and not focused on areas involved in motor task
performance. Thus, tDCS can be used as a probe to specifically
enhance task-relevant functional connectivity.

Finally, tES can be used as a tool to specifically modulate phys-
iological processes underlying functional connectivity, and thus
probe the relevance of connectivity for psychological and behav-
ioral processes. For functional connectivity, temporal association
of oscillatory brain activity, so-called ‘‘binding” processes, are
thought to play a crucial role. Thus, synchronizing the cycling firing
of remote, but functionally connected areas should improve perfor-
mance, whereas desynchronization of this distributed activity
should have detrimental effects. For such a modulation of oscilla-
tory brain activity, transcranial alternating current stimulation
(tACS) is a versatile tool. For delayed letter discrimination, i.e., a
working memory process, it has been suggested that left-
hemispheric fronto-parietal interactions play a crucial role.
Polania et al. (2012a, 2012b) tested the causal relevance of this
connection for working memory performance using tACS. During
task performance, activity of fronto-parietal areas in the theta fre-
quency band was enhanced. Furthermore, about 200 ms after stim-
ulus presentation, activity in this frequency range started to
synchronize between fronto-parietal areas. Moreover, stronger
synchronization was associated with better task performance.
Thus, it was hypothesized that not only enhanced theta activity
of left hemispheric prefrontal and parietal areas, but also their syn-
chronization was causally related to task performance. This was
directly tested by delivering tACS over the prefrontal and parietal
target areas during task performance. Real or sham tACS with a fre-
quency of 6 Hz was applied in phase or out of phase, and thus in
synchronized or desynchronized mode. In accordance with expec-
tations, synchronized tACS enhanced, whereas desynchronized
tACS reduced working memory performance relative to the sham
stimulation condition. Moreover, these effects were specific for
theta frequency stimulation, since a control experiment, in which
gamma frequency tACS was applied, had no effect. This paradig-
matic experiment demonstrated how tACS can be used to explore
the relevance of functional (in this case frequency-specific) con-
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nectivity in a distributed neuronal network for task performance.
Ideally, the stimulation experiment would have included also
EEG recordings concurrent with tACS (Helfrich et al., 2014; Voss
et al., 2014); the combination of tACS with EEG recordings will
make it possible to explore physiological and cognitive stimulation
effects in the same experiment, and will help to derive causality
between connectivity and function more directly in future studies.

Taken together, the examples given here posit tES as a valuable
tool for exploring connectivity in the human brain, including its
behavioral relevance. tES can be used to induce/enhance connec-
tivity originating from a specific area and, thus, to characterize
connections independent from complex, often multi-modal, task-
related activation. It furthermore can be useful to explore the con-
tribution of a target area to a task-dependently activated network,
and it can be applied to explore the causal relevance of functional
connectivity for task performance, including specific features, such
as frequency-dependency, and mode of synchronization. One
important aspect of tES is its primary neuromodulatory effect. In
contrast to TMS, it does not induce, but modifies spontaneous cere-
bral activity. Dependent on the context to be explored, this can be
advantageous or disadvantageous. Thus, the non-disruptive online
effects of tES might be crucial for its bi-directional effects on task
performance, but, together with limitations regarding temporal
and spatial resolution, might limit its suitability regarding physio-
logical determination of connectivity. Future protocols, including
closed-loop, and multi-electrode systems, might further enhance
precision of these tools, and enable exploration of larger and more
complex functionally connected networks in vivo in the human
brain.
6. Conclusions

This review provides an extensive, multimodal and updated
approach to the topic of methods for the exploration of brain con-
nectivity, with a consideration of the strengths and weaknesses of
each technology. A complex and multifaceted variety of aspects
including those concerning structural, functional, effective, time-
varying and dynamic brain connections cannot be approached
and solved with a single method, but needs multiple and inte-
grated methodologies for solving its individual facets. Within this
line a multidisciplinary team of researchers are needed in order
to select the optimal methods to track the scientific targets in
the most appropriate way. Knowledge of the structural connec-
tions logically comes first; what parts of the brain are anatomically
connected. As noted here, information about structure can build
from microscopic to macroscopic scale. On that basis, it is possible
to explore and understand the functional connectivity. Moreover,
information flow will vary dynamically with brain state. Much
information can be, and is being collected, in the resting state,
but ultimately it will be crucial to know information flow related
to different tasks and behaviors. As has been pointed out, since
the brain operates in networks, it will be necessary to have
descriptors of network operation to fully understand the neural
processing. With this type of approach, future studies and an
enriching ‘‘connection” within the research community will enable
neuroscientists to disentangle the inner mechanisms regulating
connectivity architecture of the major brain activities, including
learning, memory, mood level, emotional expression, language,
task-related skills and other domains, both in health and in neu-
ropsychiatric diseases.

Looking at the functioning brain as a ‘‘society” of dynamically
interconnected neuronal assemblies represents a change of para-
digm not only in neuroscientific research, but also (or even mainly)
in clinical neurosciences. In the near future it will be possible to
disentangle ‘‘good” (i.e. by recognizing online the presence of opti-
mal network architecture for learning, memory, task-related func-
tion) and ‘‘aberrant” networks (i.e. those sustaining a symptom like
an epileptic spike, a dystonic movement, a behavioral/cognitive
dysfunction) and to tailor therapeutic and rehabilitative
approaches having a central ‘‘marker” to measure their efficacy
and to better personalize the interventions of cure.
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