181 research outputs found

    Surface Tension at Finite Tempearture in the MIT Bag Model

    Full text link
    At T=0 T = 0 the surface tension σ1/3 \sigma ^{1/3} in the MIT bag model for a single hadron is known to be negligible as compared to the bag pressure B1/4 B^{1/4}. We show that at finite temperature it has a substantial value of 50 - 70 MeV which also differ from hadron to hadron. We also find that the dynamics of the Quark-Gluon Plasma is such that the creation of hybrids (ssˉg)(s\bar{s}g) with massive quarks will predominate over the creation of (ssˉ) (s\bar{s}) mesons.Comment: Substantial changes in the revised version and a new author included, 13 pages in Latex and one figur

    Nonprofit governance: Improving performance in troubled economic times

    Get PDF
    Nonprofit management is currently pressured to perform effectively in a weak economy. Yet, nonprofit governance continues to suffer from unclear conceptions of the division of labor between board of directors and executive directors. This online survey of 114 executive directors aims to provide clarification and recommendations for social administration

    All-Optical Steering Of Laser-Wakefield-Accelerated Electron Beams

    Get PDF
    We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial laser axis. We also discovered evidence of collective electron-betatron oscillations due to odd-axis electron injection into the wakefield induced by a pulse-front tilt. These findings are supported by 3D particle-in-cell simulations

    Intravesical rAd-IFNα/Syn3 for Patients With High-Grade, Bacillus Calmette-Guerin-Refractory or Relapsed Non-Muscle-Invasive Bladder Cancer: A Phase II Randomized Study.

    Get PDF
    Purpose Many patients with high-risk non-muscle-invasive bladder cancer (NMIBC) are either refractory to bacillus Calmette-Guerin (BCG) treatment or may experience disease relapse. We assessed the efficacy and safety of recombinant adenovirus interferon alfa with Syn3 (rAd-IFNα/Syn3), a replication-deficient recombinant adenovirus gene transfer vector, for patients with high-grade (HG) BCG-refractory or relapsed NMIBC. Methods In this open-label, multicenter (n = 13), parallel-arm, phase II study ( ClinicalTrials.gov identifier: NCT01687244), 43 patients with HG BCG-refractory or relapsed NMIBC received intravesical rAd-IFNα/Syn3 (randomly assigned 1:1 to 1 × 10(11) viral particles (vp)/mL or 3 × 10(11) vp/mL). Patients who responded at months 3, 6, and 9 were retreated at months 4, 7, and 10. The primary end point was 12-month HG recurrence-free survival (RFS). All patients who received at least one dose were included in efficacy and safety analyses. Results Forty patients received rAd-IFNα/Syn3 (1 × 10(11) vp/mL, n = 21; 3 × 10(11) vp/mL, n = 19) between November 5, 2012, and April 8, 2015. Fourteen patients (35.0%; 90% CI, 22.6% to 49.2%) remained free of HG recurrence 12 months after initial treatment. Comparable 12-month HG RFS was noted for both doses. Of these 14 patients, two experienced recurrence at 21 and 28 months, respectively, after treatment initiation, and one died as a result of an upper tract tumor at 17 months without a recurrence. rAd-IFNα/Syn3 was well tolerated; no grade four or five adverse events (AEs) occurred, and no patient discontinued treatment because of an adverse event. The most frequently reported drug-related AEs were micturition urgency (n = 16; 40%), dysuria (n = 16; 40%), fatigue (n = 13; 32.5%), pollakiuria (n = 11; 28%), and hematuria and nocturia (n = 10 each; 25%). Conclusion rAd-IFNα/Syn3 was well tolerated. It demonstrated promising efficacy for patients with HG NMIBC after BCG therapy who were unable or unwilling to undergo radical cystectomy

    Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell

    Get PDF
    Laser-driven, quasimonoenergetic electron beams of up to ~200 MeV in energy have been observed from steady-state-flow fas cells. These beams emitted within a low-divergence cone of 2.1 ± 0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation

    Constraints on possible phase transitions above the nuclear saturation density

    Get PDF
    We compare different models for hadronic and quark phases of cold baryon-rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka-type mean-field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu-Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.Comment: 28 pages, 18 PostScript figures, submitted to Phys. Rev.

    A Clinician\u27s Guide to Next Generation Imaging in Patients With Advanced Prostate Cancer (RADAR III).

    Get PDF
    PURPOSE: The advanced prostate cancer therapeutic landscape has changed dramatically in the last several years, resulting in improved overall survival of patients with castration naïve and castration resistant disease. The evolution and development of novel next generation imaging techniques will affect diagnostic and therapeutic decision making. Clinicians must navigate when and which next generation imaging techniques to use and how to adjust treatment strategies based on the results, often in the absence of correlative therapeutic data. Therefore, guidance is needed based on best available information and current clinical experience. MATERIALS AND METHODS: The RADAR (Radiographic Assessments for Detection of Advanced Recurrence) III Group convened to offer guidance on the use of next generation imaging to stage prostate cancer based on available data and clinical experience. The group also discussed the potential impact of next generation imaging on treatment options based on earlier detection of disease. RESULTS: The group unanimously agreed that progression to metastatic disease is a seminal event for patient treatment. Next generation imaging techniques are able to detect previously undetectable metastases, which could redefine the phases of prostate cancer progression. Thus, earlier systemic or locally directed treatment may positively alter patient outcomes. CONCLUSIONS: The RADAR III Group recommends next generation imaging techniques in select patients in whom disease progression is suspected based on laboratory (biomarker) values, comorbidities and symptoms. Currently 18F-fluciclovine and 68Ga prostate specific membrane antigen positron emission tomography/computerized tomography are the next generation imaging agents with a favorable combination of availability, specificity and sensitivity. There is ongoing research of additional next generation imaging technologies, which may offer improved diagnostic accuracy and therapeutic options. As next generation imaging techniques evolve and presumably result in improved global accessibility, clinician ability to detect micrometastases may be enhanced for decision making and patient outcomes

    Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer

    Get PDF
    Purpose: Zoledronic acid (ZA) or denosumab treatment reduces skeletal-related events; however, the safety of prolonged therapy has not been adequately studied. Here, we describe safety results of extended denosumab therapy in patients with bone metastases from the open-label extension phase of two phase 3 trials. Methods: Patients with metastatic breast or prostate cancer received subcutaneous denosumab 120 mg Q4W or intravenous ZA 4 mg Q4W in a double-blinded fashion. Denosumab demonstrated superior efficacy in the blinded treatment phase; thus, patients were offered open-label denosumab for up to an additional 2 years. Results: Cumulative median (Q1, Q3) denosumab exposure was 19.1 (9.2, 32.2) months in the breast cancer trial (n = 1019) and 12.0 (5.6, 21.3) months in the prostate cancer trial (n = 942); 295 patients received denosumab for >3 years. No new safety signals were identified during the open-label phase, or among patients who switched from ZA to denosumab. During the blinded treatment phase, exposure-adjusted subject incidences of osteonecrosis of the jaw (ONJ) were 49 (1.9 %) and 31 (1.2 %) in the denosumab and ZA groups, respectively. In total, 32 (6.9 %) and 25 (5.5 %) new cases of ONJ (not adjusted for exposure) were reported for patients continuing and switching to denosumab, respectively. The incidences of hypocalcemia were 4.3 and 3.1 %, in patients continuing and switching to denosumab, respectively. Conclusion: These results describe the safety profile of denosumab after long-term exposure, or after switching to denosumab from ZA. No new safety signals were identified. Hypocalcemia rates were similar in the blinded treatment and open-label phases. ONJ rates increased with increasing exposure to antiresorptives, consistent with previous reports

    Killer immunoglobulin-like receptor and human leukocyte antigen-C genotypes in rheumatoid arthritis primary responders and non-responders to anti-TNF-α therapy

    Get PDF
    The identification of patients who will respond to anti-tumor necrosis factor alpha (anti-TNF-α) therapy will improve the efficacy, safety, and economic impact of these agents. We investigated whether killer cell immunoglobulin-like receptor (KIR) genes are related to response to anti-TNF-α therapy in patients with rheumatoid arthritis (RA). Sixty-four RA patients and 100 healthy controls were genotyped for 16 KIR genes and human leukocyte antigen-C (HLA-C) group 1/2 using polymerase chain reaction sequence-specific oligonucleotide probes (PCR-SSOP). Each patient received anti-TNF-α therapy (adalimumab, etanercept, or infliximab), and clinical responses were evaluated after 3 months using the disease activity score in 28 joints (DAS28). We investigated the correlations between the carriership of KIR genes, HLA-C group 1/2 genes, and clinical data with response to therapy. Patients responding to therapy showed a significantly higher frequency of KIR2DS2/KIR2DL2 (67.7% R vs. 33.3% NR; P = 0.012). A positive clinical outcome was associated with an activating KIR–HLA genotype; KIR2DS2(+)HLA-C group 1/2 homozygous. Inversely, non-response was associated with the relatively inhibitory KIR2DS2(–)HLA-C group 1/2 heterozygous genotype. The KIR and HLA-C genotype of an RA patient may provide predictive information for response to anti-TNF-α therapy

    Simulating the global distribution of nitrogen isotopes in the ocean

    Get PDF
    We present a new nitrogen isotope model incorporated into the three-dimensional ocean component of a global Earth system climate model designed for millennial timescale simulations. The model includes prognostic tracers for the two stable nitrogen isotopes, 14N and 15N, in the nitrate (NO3−), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO3− uptake, nitrogen fixation, water column denitrification, and zooplankton excretion are considered as well as the removal of NO3− by sedimentary denitrification. A global database of δ15NO3− observations is compiled from previous studies and compared to the model results on a regional basis where sufficient observations exist. The model is able to qualitatively and quantitatively reproduce many of the observed patterns such as high subsurface values in water column denitrification zones and the meridional and vertical gradients in the Southern Ocean. The observed pronounced subsurface minimum in the Atlantic is underestimated by the model presumably owing to too little simulated nitrogen fixation there. Sensitivity experiments reveal that algal NO3− uptake, nitrogen fixation, and water column denitrification have the strongest effects on the simulated distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is weaker. Both water column and sedimentary denitrification also have important indirect effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 fixation in the model. Important model deficiencies are identified, and strategies for future improvement and possibilities for model application are outlined
    • …
    corecore