494 research outputs found

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides

    Full text link
    Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two-modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.Comment: 19 pages, 8 figure

    Energy scale of Dirac electrons in Cd3As2

    Get PDF
    Cadmium arsenide (Cd3As2) has recently became conspicuous in solid-state physics due to several reports proposing that it hosts a pair of symmetry-protected 3D Dirac cones. Despite vast investigations, a solid experimental insight into the band structure of this material is still missing. Here we fill one of the existing gaps in our understanding of Cd3As2, and based on our Landau-level spectroscopy study, we provide an estimate for the energy scale of 3D Dirac electrons in this system. We find that the appearance of such charge carriers is limited-contrary to a widespread belief in the solid-state community-to a relatively small energy scale (below 40 meV)

    Spin Degeneracy and Conductance Fluctuations in Open Quantum Dots

    Full text link
    The dependence of mesoscopic conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly two in a 1 square-micron dot at low temperature, to four or greater in 8 square-micron dots. The factor of two is expected for simple Zeeman splitting of spin degenerate channels. A possible explanation for the unexpected larger factors in terms of field-dependent spin orbit scattering is proposed.Comment: Includes new reference to related theoretical work, cond-mat/0010064. Other minor changes. Related papers at http://marcuslab.harvard.ed

    Risk of bias assessments in individual participant data meta-analyses of test accuracy and prediction models:a review shows improvements are needed

    Get PDF
    OBJECTIVES: Risk of bias assessments are important in meta-analyses of both aggregate and individual participant data (IPD). There is limited evidence on whether and how risk of bias of included studies or datasets in IPD meta-analyses (IPDMAs) is assessed. We review how risk of bias is currently assessed, reported, and incorporated in IPDMAs of test accuracy and clinical prediction model studies and provide recommendations for improvement.STUDY DESIGN AND SETTING: We searched PubMed (January 2018-May 2020) to identify IPDMAs of test accuracy and prediction models, then elicited whether each IPDMA assessed risk of bias of included studies and, if so, how assessments were reported and subsequently incorporated into the IPDMAs.RESULTS: Forty-nine IPDMAs were included. Nineteen of 27 (70%) test accuracy IPDMAs assessed risk of bias, compared to 5 of 22 (23%) prediction model IPDMAs. Seventeen of 19 (89%) test accuracy IPDMAs used Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), but no tool was used consistently among prediction model IPDMAs. Of IPDMAs assessing risk of bias, 7 (37%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided details on the information sources (e.g., the original manuscript, IPD, primary investigators) used to inform judgments, and 4 (21%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided information or whether assessments were done before or after obtaining the IPD of the included studies or datasets. Of all included IPDMAs, only seven test accuracy IPDMAs (26%) and one prediction model IPDMA (5%) incorporated risk of bias assessments into their meta-analyses. For future IPDMA projects, we provide guidance on how to adapt tools such as Prediction model Risk Of Bias ASsessment Tool (for prediction models) and QUADAS-2 (for test accuracy) to assess risk of bias of included primary studies and their IPD.CONCLUSION: Risk of bias assessments and their reporting need to be improved in IPDMAs of test accuracy and, especially, prediction model studies. Using recommended tools, both before and after IPD are obtained, will address this.</p

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
    corecore