32 research outputs found

    How model uncertainties influence tropical humidity in global storm-resolving simulations

    Get PDF
    We conduct a series of eight 45-day experiments with a global storm-resolving model (GSRM) to test the sensitivity of relative humidity R in the tropics to changes in model resolution and parameterizations. These changes include changes in horizontal and vertical grid spacing as well as in the parameterizations of microphysics and turbulence, and are chosen to capture currently existing differences among GSRMs. To link the R distribution in the tropical free troposphere with processes in the deep convective regions, we adopt a trajectory-based assessment of the last-saturation paradigm. The perturbations we apply to the model result in tropical mean R changes ranging from 0.5 to 8 (absolute) in the mid troposphere. The generated R spread is similar to that in a multi-model ensemble of GSRMs and smaller than the spread across conventional general circulation models, supporting that an explicit representation of deep convection reduces the uncertainty in tropical R. The largest R changes result from changes in parameterizations, suggesting that model physics represent a major source of humidity spread across GSRMs. The R in the moist tropical regions is disproportionately sensitive to vertical mixing processes within the tropics, which impact R through their effect on the last-saturation temperature rather than their effect on the evolution of the humidity since last-saturation. In our analysis the R of the dry tropical regions strongly depends on the exchange with the extra-tropics. The interaction between tropics and extratropics could change with warming and presage changes in the radiatively sensitive dry regions

    First data set of H<sub>2</sub>O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI)

    Get PDF
    This paper presents a new data set of vertical column densities of the water vapour isotopologues H2O and HDO retrieved from short-wave infrared (2.3 Όm) reflectance measurements by the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite. TROPOMI features daily global coverage with a spatial resolution of up to 7 km × 7 km. The retrieval utilises a profile-scaling approach. The forward model neglects scattering, thus strict cloud filtering is necessary. For validation, recent ground-based water vapour isotopologue measurements by the Total Carbon Column Observing Network (TCCON) are employed. A comparison of TCCON ÎŽD with measurements by the project Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) for data prior to 2014 (where MUSICA data is available) shows a bias in TCCON ÎŽD estimates. As TCCON HDO is currently not validated, an overall correction of recent TCCON HDO data is derived based on this finding. The agreement between the corrected TCCON measurements and collocated TROPOMI observations is good with an average bias of (0.02 ± 2) · 1021 molec cm−2 in H2O and (−0.3 ± 7) · 1017 molec cm−2 in HDO, which corresponds to a bias of (−12 ± 17) ‰ in a posteriori ÎŽD. The use of the data set is demonstrated with a case study of a blocking anticyclone in northwestern Europe in July 2018 using single overpass data

    Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)

    Get PDF
    In this work, we present the first study resolving the temporal evolution of &amp;delta;&lt;sup&gt;2&lt;/sup&gt;H and &amp;delta;&lt;sup&gt;18&lt;/sup&gt;O values in cloud droplets during 13 different cloud events. The cloud events were probed on a 937 m high mountain chain in Germany in the framework of the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) in September and October 2010. The &amp;delta; values of cloud droplets ranged from −77&amp;permil; to −15‰ (&amp;delta;&lt;sup&gt;2&lt;/sup&gt;H) and from −12.1‰ to −3.9‰ (&amp;delta;&lt;sup&gt;18&lt;/sup&gt;O) over the whole campaign. The cloud water line of the measured &amp;delta; values was &amp;delta;&lt;sup&gt;2&lt;/sup&gt;H=7.8&amp;times;&amp;delta;&lt;sup&gt;18&lt;/sup&gt;O+13&amp;times;10&lt;sup&gt;&amp;minus;3&lt;/sup&gt;, which is of similar slope, but with higher deuterium excess than other Central European Meteoric Water Lines. Decreasing ή values in the course of the campaign agree with seasonal trends observed in rain in central Europe. The deuterium excess was higher in clouds developing after recent precipitation revealing episodes of regional moisture recycling. The variations in ή values during one cloud event could either result from changes in meteorological conditions during condensation or from variations in the &amp;delta; values of the water vapor feeding the cloud. To test which of both aspects dominated during the investigated cloud events, we modeled the variation in ή values in cloud water using a closed box model. We could show that the variation in ή values of two cloud events was mainly due to changes in local temperature conditions. For the other eleven cloud events, the variation was most likely caused by changes in the isotopic composition of the advected and entrained vapor. Frontal passages during two of the latter cloud events led to the strongest temporal changes in both &amp;delta;&lt;sup&gt;2&lt;/sup&gt;H (≈ 6&amp;permil; per hour) and &amp;delta;&lt;sup&gt;18&lt;/sup&gt;O (≈ 0.6&amp;permil; per hour). Moreover, a detailed trajectory analysis for the two longest cloud events revealed that variations in the entrained vapor were most likely related to rain out or changes in relative humidity and temperature at the moisture source region or both. This study illustrates the sensitivity of stable isotope composition of cloud water to changes in large scale air mass properties and regional recycling of moisture

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
    corecore