831 research outputs found
Characterization of a 5-eV neutral atomic oxygen beam facility
An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm
Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance, but not VLDL Production in NAFLD
Context Randomised controlled trials in non-alcoholic fatty liver disease (NAFLD) have shown that regular exercise, even without calorie restriction, reduces liver steatosis. A previous study has shown that 16 weeks supervised exercise training in NAFLD did not affect total VLDL kinetics.
Objective To determine the effect of exercise training on intrahepatocellular fat (IHCL) and the kinetics of large triglyceride-(TG)-rich VLDL1 and smaller denser VLDL2 which has a lower TG content.
Design A 16 week randomised controlled trial.
Patients 27 sedentary patients with NAFLD.
Intervention Supervised exercise with moderate-intensity aerobic exercise or conventional lifestyle advice (control).
Main outcome Very low density lipoprotein1 (VLDL1) and VLDL2-TG and apolipoproteinB (apoB) kinetics investigated using stable isotopes before and after the intervention.
Results In the exercise group VO2max increased by 31±6% (mean±SEM) and IHCL decreased from 19.6% (14.8, 30.0) to 8.9% (5.4, 17.3) (median (IQR)) with no significant change in VO2max or IHCL in the control group (change between groups p<0.001 and p=0.02, respectively). Exercise training increased VLDL1-TG and apoB fractional catabolic rates, a measure of clearance, (change between groups p=0.02 and p=0.01, respectively), and VLDL1-apoB production rate (change between groups p=0.006), with no change in VLDL1 -TG production rate. Plasma TG did not change in either group.
Conclusion An increased clearance of VLDL1 may contribute to the significant decrease in liver fat following 16 weeks of exercise in NAFLD. A longer duration or higher intensity exercise interventions may be needed to lower plasma TG and VLDL production rate
Metabolically healthy and unhealthy obesity: differential effects on myocardial function according to metabolic syndrome, rather than obesity.
BACKGROUND: The term 'metabolically healthy obese (MHO)' is distinguished using body mass index (BMI), yet BMI is a poor index of adiposity. Some epidemiological data suggest that MHO carries a lower risk of cardiovascular disease (CVD) or mortality than being normal weight yet metabolically unhealthy. OBJECTIVES: We aimed to undertake a detailed phenotyping of individuals with MHO by using imaging techniques to examine ectopic fat (visceral and liver fat deposition) and myocardial function. We hypothesised that metabolically unhealthy individuals (irrespective of BMI) would have adverse levels of ectopic fat and myocardial dysfunction compared with MHO individuals. SUBJECTS: Individuals were categorised as non-obese or obese (BMI ⩾30 kg m(-2)) and as metabolically healthy or unhealthy according to the presence or absence of metabolic syndrome. METHODS: Sixty-seven individuals (mean±s.d.: age 49±11 years) underwent measurement of (i) visceral, subcutaneous and liver fat using magnetic resonance imaging and proton magnetic resonance spectroscopy, (ii) components of metabolic syndrome, (iii) cardiorespiratory fitness and (iv) indices of systolic and diastolic function using tissue Doppler echocardiography. RESULTS: Cardiorespiratory fitness was similar between all groups; abdominal and visceral fat was highest in the obese groups. Compared with age- and BMI-matched metabolically healthy counterparts, the unhealthy (lean or obese) individuals had higher liver fat and decreased early diastolic strain rate, early diastolic tissue velocity and systolic strain indicative of subclinical systolic and diastolic dysfunction. The magnitude of dysfunction correlated with the number of components of metabolic syndrome but not with BMI or with the degree of ectopic (visceral or liver) fat deposition. CONCLUSIONS: Myocardial dysfunction appears to be related to poor metabolic health rather than simply BMI or fat mass. These data may partly explain the epidemiological evidence on CVD risk relating to the different obesity phenotypes
Exercise-induced improvements in liver fat and endothelial function are not sustained 12 months following cessation of exercise supervision in non-alcoholic fatty liver disease (NAFLD).
AIMS: Supervised exercise reduces liver fat and improves endothelial function, a surrogate of cardiovascular disease risk, in non-alcoholic fatty liver disease (NAFLD). We hypothesised that after a 16-week supervised exercise program, patients would maintain longer-term improvements in cardiorespiratory fitness, liver fat and endothelial function. MATHERIALS AND METHODS: Ten NAFLD patients [5/5 males/females, age 51±13years, BMI 31±3 kg.m(2) (mean±s.d.)] underwent a 16-week supervised moderate-intensity exercise intervention. Biochemical markers, cardiorespiratory fitness (VO2peak), subcutaneous, visceral and liver fat (measured by magnetic resonance imaging and spectroscopy respectively) and brachial artery flow-mediated dilation (FMD) were assessed at baseline, after 16 weeks supervised training and 12-months after ending supervision. RESULTS: Despite no significant change in body weight, there were significant improvements in VO2peak [6.5 ml.kg(-1).min(-1) (95% CI 2.8, 10.1); P=0.003], FMD [2.9% (1.5, 4.2); P=0.001], liver transaminases (P0.05) and liver fat [1.4% (-13.0, 15.9); P=0.83] were not significantly different from baseline. CONCLUSIONS: Twelve months following cessation of supervision, exercise-mediated improvements in liver fat and other cardiometabolic variables had reversed with cardiorespiratory fitness at baseline levels. Maintenance of high cardiorespiratory fitness and stability of body weight are critical public health considerations for the treatment of NAFLD.International Journal of Obesity accepted article preview online, 21 July 2016. doi:10.1038/ijo.2016.123
Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions
BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users
Sideband Cooling Micromechanical Motion to the Quantum Ground State
The advent of laser cooling techniques revolutionized the study of many
atomic-scale systems. This has fueled progress towards quantum computers by
preparing trapped ions in their motional ground state, and generating new
states of matter by achieving Bose-Einstein condensation of atomic vapors.
Analogous cooling techniques provide a general and flexible method for
preparing macroscopic objects in their motional ground state, bringing the
powerful technology of micromechanics into the quantum regime. Cavity opto- or
electro-mechanical systems achieve sideband cooling through the strong
interaction between light and motion. However, entering the quantum regime,
less than a single quantum of motion, has been elusive because sideband cooling
has not sufficiently overwhelmed the coupling of mechanical systems to their
hot environments. Here, we demonstrate sideband cooling of the motion of a
micromechanical oscillator to the quantum ground state. Entering the quantum
regime requires a large electromechanical interaction, which is achieved by
embedding a micromechanical membrane into a superconducting microwave resonant
circuit. In order to verify the cooling of the membrane motion into the quantum
regime, we perform a near quantum-limited measurement of the microwave field,
resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore,
our device exhibits strong-coupling allowing coherent exchange of microwave
photons and mechanical phonons. Simultaneously achieving strong coupling,
ground state preparation and efficient measurement sets the stage for rapid
advances in the control and detection of non-classical states of motion,
possibly even testing quantum theory itself in the unexplored region of larger
size and mass.Comment: 13 pages, 7 figure
Prediction of photoperiodic regulators from quantitative gene circuit models
Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement
Fungal diversity associated to the olive moth, prays oleae Bernard : a survey for potential entomopathogenic fungi
Olive production is one of the main agricultural activities in Portugal. In the region of Trás-os-Montes this crop has been considerably affected by Prays oleae. In order to evaluate the diversity of fungi on P. oleae population of Trás-os-Montes olive orchards, larvae and pupae of the three annual generations (phyllophagous, antophagous and carpophagous) were collected and evaluated for fungal growth on their surface. From the 3828 larvae and pupae, a high percentage of individuals exhibited growth of a fungal agent (40.6%), particularly those from the phyllophagous generation. From all the moth generations, a total of 43 species from 24 genera were identified, but the diversity and abundance of fungal species differed between the three generations. Higher diversity was found in the carpophagous generation, followed by the antophagous and phyllophagous generations. The presence of fungi displaying entomopathogenic features was highest in the phyllophagous larvae and pupae, being B. bassiana the most abundant taxa. The first report of B. bassiana presence on P. oleae could open new strategies for the biocontrol of this major pest in olive groves, since the use of an already adapted species increases the guarantee of success of a biocontrol approach. The identification of antagonistic fungi able to control agents that cause major olive diseases, such as Verticillium dahliae, will benefit future biological control approaches for limiting this increasingly spreading pathogen.This work was supported by Science and Technology Foundation (Fundação para a Ciência e Tecnologia – FCT) project PTDC/AGR-AAM/102600/2008 “Entomopathogenic fungi associated to olive pests: isolation, characterization and selection for biological control”. The first author is grateful to the Science and Technology Foundation for the PhD grant SFRH/BD/44265/2008
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
A genome-wide association study identifies risk alleles in plasminogen and P4HA2 associated with giant cell arteritis
Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analysed in 2,134 cases and 9,125 unaffected controls from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, P = 1.94E-54, per-allele OR = 1.79; and rs9275592, P = 1.14E-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, P = 1.23E-10, OR = 1.28; and rs128738, P = 4.60E-09, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis
- …
