1,643 research outputs found

    Effects of virus infection on release of volatile organic compounds from insect-damaged bean, Phaseolus vulgaris

    Get PDF
    Insects can serve as important vectors of plant pathogens, especially viruses. Insect feeding on plants causes the systemic release of a wide range of plant volatile compounds that can serve as an indirect plant defense by attracting natural enemies of the herbivorous insect. Previous work suggests that the Mexican bean beetle (Epilachna varivestis) prefers to feed on plants infected by either of two viruses that it is known to transmit: Southern bean mosaic virus (SBMV) or Bean pod mottle virus (BPMV). A possible explanation for the preferred feeding on virus-infected tissues is that the beetles are attracted by volatile signals released from leaves. The purpose of this work was to determine whether volatile compounds from virus-infected plants are released differentially from those emitted by uninfected plants. To test the hypothesis, common bean plants (Phaseolus vulgaris cv. Black Valentine) were inoculated with either BPMV, SBMV, or a mixture of both viruses, and infected plants were compared to uninfected plants. An Ouchterlony assay was used with SBMVand BPMV-specific antisera to confirm the presence of virus in inoculated plants. RNA blot analysis was performed on tissue from each plant and indicated that a well-characterized defense gene, encoding phenylalanine ammonia-lyase (PAL), was not induced in systemic tissue following virus infection. Plant volatiles were collected—and analyzed via gas chromatography (GC)—from plants that were either undamaged or beetle-damaged. In undamaged plants, there were no measurable differences in profiles or quantities of compounds released by uninfected and virus-infected plants. After Mexican bean beetles were allowed to feed on plants for 48 h, injured plants released several compounds that were not released from undamaged plants. Lower quantities of volatile compounds were released from virus-infected plants suggesting that enhanced release of plant-derived volatile organic compounds is not the cause for attraction of Mexican bean beetles to virus-infected plants

    Polar and Cluster observations of a dayside inverted-V during conjunction

    Get PDF
    We investigate particle and fields data during a conjunction of the Polar and Cluster spacecraft. This conjunction occurs near the dayside cusp boundary layer when a dayside inverted-V was observed in the particle data of both satellites. Electron, ion, electric field, and magnetic field data from each satellite confirm that the dayside inverted-V (DSIV) structure is present at the location of both satellites and the electric fields persist from the altitude of the Polar (lower) spacecraft to the altitude of the Cluster spacecraft. We observe accelerated, precipitating electrons and upward ions along the magnetic field. In addition, large amplitude electric fields perpendicular to the ambient magnetic field seen by Polar and by Cluster suggest significant parallel electric fields associated with these events. For similar DSIV events observed by the Polar spacecraft, plasma waves (identified as possible Alfvén waves) have been observed to propagate in both directions along the magnetic field line. Future conjunctions will be necessary to confirm that DSIVs are associated with reconnection sites

    Re-Evaluation of Sinocastor (Rodentia: Castoridae) with Implications on the Origin of Modern Beavers

    Get PDF
    The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    The Atomic Manifesto: a Story in Four Quarks

    Get PDF
    This report summarizes the viewpoints and insights gathered in the Dagstuhl Seminar on Atomicity in System Design and Execution, which was attended by 32 people from four different scientific communities: database and transaction processing systems, fault tolerance and dependable systems, formal methods for system design and correctness reasoning, and hardware architecture and programming languages. Each community presents its position in interpreting the notion of atomicity and the existing state of the art, and each community identifies scientific challenges that should be addressed in future work. In addition, the report discusses common themes across communities and strategic research problems that require multiple communities to team up for a viable solution. The general theme of how to specify, implement, compose, and reason about extended and relaxed notions of atomicity is viewed as a key piece in coping with the pressing issue of building and maintaining highly dependable systems that comprise many components with complex interaction patterns

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal
    corecore