239 research outputs found

    Untangling the relationships between DNA repair pathways by silencing more than 20 DNA repair genes in human stable clones

    Get PDF
    Much effort has long been devoted to unraveling the coordinated cellular response to genotoxic insults. In view of the difficulty of obtaining human biological samples of homogeneous origin, I have established a set of stable human clones where one DNA repair gene has been stably silenced by means of RNA interference. I used pEBVsiRNA plasmids that greatly enhance long-term gene silencing in human cells. My older clones reached >500 days in culture. Knock-down HeLa clones maintained a gene silencing phenotype for an extended period in culture, demonstrating that I was able to mimic cells from cancer-prone syndromes. I have silenced >20 genes acting as sensors/transducers (ATM, ATR, Rad50, NBS1, MRE11, PARG and KIN17), or of different DNA repair pathways. In HeLa cells, I have switched off the expression of genes involved in nucleotide excision repair (XPA, XPC, hHR23A, hHR23B, CSA and CSB), nonhomologous end-joining (DNA-PKcs, XRCC4 and Ligase IV), homologous recombination repair (Rad51 and Rad54), or base excision repair (Ogg1 and Ligase III). These cells displayed the expected DNA repair phenotype. We could envisage untangling the complex network between the different DNA repair pathways. In this study, no viral vehicles, with their attendant ethical and safety concerns, were used

    Neuroactive substance and uses of one such substance

    Get PDF
    Co-inventeur en collaboration avec le laboratoire UPRES EA MMS (Substances Marines à Activités Biologiques) – Professeur JF Biard de l’Université de Nantes nous avons déposé un brevet. Ce brevet concerne l’utilisation d’une molécule isolée d’un corail comme traceur des canaux calciques dépendants du potentiel à bas seuil d’activation. A ce jour, il s’agit de la première molécule connue pour agir de cette façon. Un brevet français a été déposé tant pour la structure de cette molécule que pour son activité particulière

    Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death

    Get PDF
    Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death

    Effect of Restricted Preen-Gland Access on Maternal Self Maintenance and Reproductive Investment in Mallards

    Get PDF
    As egg production and offspring care are costly, females should invest resources adaptively into their eggs to optimize current offspring quality and their own lifetime reproductive success. Parasite infections can influence maternal investment decisions due to their multiple negative physiological effects. The act of preening--applying oils with anti-microbial properties to feathers--is thought to be a means by which birds combat pathogens and parasites, but little is known of how preening during the reproductive period (and its expected disease-protecting effects) influences maternal investment decisions at the level of the egg.Here, we experimentally prevented female mallards (Anas platyrhynchos) from accessing their preen gland during breeding and monitored female immunoresponsiveness (e.g., plasma lysozyme concentration) as well as some egg traits linked to offspring quality (e.g., egg mass, yolk carotenoid content, and albumen lysozyme levels). Females with no access to their preen gland showed an increase in plasma lysozyme level compared to control, normally preening females. In addition, preen-gland-restricted females laid significantly lighter eggs and deposited higher carotenoid concentrations in the yolk compared to control females. Albumen lysozyme activity did not differ significantly between eggs laid by females with or without preen gland access.Our results establish a new link between an important avian self-maintenance behaviour and aspects of maternal health and reproduction. We suggest that higher yolk carotenoid levels in eggs laid by preen-gland-restricted females may serve to boost health of offspring that would hatch in a comparatively microbe-rich environment

    The biogeochemical impact of glacial meltwater from Southwest Greenland

    Get PDF
    Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary

    Novel Anti-Metastatic Action of Cidofovir Mediated by Inhibition of E6/E7, CXCR4 and Rho/ROCK Signaling in HPV+ Tumor Cells

    Get PDF
    Cervical cancer is frequently associated with HPV infection. The expression of E6 and E7 HPV oncoproteins is a key factor in its carcinogenicity and might also influence its virulence, including metastatic conversion. The cellular mechanisms involved in metastatic spread remain elusive, but pro-adhesive receptors and their ligands, such as SDF-1α and CXCR4 are implicated. In the present study, we assessed the possible relationship between SDF-1α/CXCR4 signaling, E6/E7 status and the metastatic process. We found that SDF-1α stimulated the invasion of E6/E7-positive cancer cell lines (HeLa and TC-1) in Matrigel though CXCR4 and subsequent Rho/ROCK activation. In pulmonary metastatic foci generated by TC-1 cells IV injection a high proportion of cells expressed membrane-associated CXCR4. In both cases models (in vitro and in vivo) cell adhesion and invasion was abrogated by CXCR4 immunological blockade supporting a contribution of SDF-1α/CXCR4 to the metastatic process. E6 and E7 silencing using stable knock-down and the approved anti-viral agent, Cidofovir decreased CXCR4 gene expression as well as both, constitutive and SDF-1α-induced cell invasion. In addition, Cidofovir inhibited lung metastasis (both adhesion and invasion) supporting contribution of E6 and E7 oncoproteins to the metastatic process. Finally, potential signals activated downstream SDF-1α/CXCR4 and involved in lung homing of E6/E7-expressing tumor cells were investigated. The contribution of the Rho/ROCK pathway was suggested by the inhibitory effect triggered by Cidofovir and further confirmed using Y-27632 (a small molecule ROCK inhibitor). These data suggest a novel and highly translatable therapeutic approach to cervix cancer, by inhibition of adhesion and invasion of circulating HPV-positive tumor cells, using Cidofovir and/or ROCK inhibition
    corecore