22 research outputs found

    EVALUATION OF DEM DERIVED BY REPEAT-PASS X-BAND STRIPMAP MODE PAZ DATA

    Get PDF
    Abstract. This paper, presents the initial results of digital elevation model (DEM) extraction from PAZ Synthetic Aperture Radar (SAR) satellite images using repeat-pass interferometric analysis. We used a multi-temporal high-resolution strip-map mode X-band satellite image that has a single polarization. Five main classes, i.e., volcanic structures, agriculture, settlement, sand dune and plain bareland are considered depending on the structure of the region. Within the category, the coherence value and DEM value are evaluated. In the accuracy assessment analysis, a reference map produced from aerial photogrammetry is used. Additionally, global DEM TanDEM-X data is also tested in the study region. In the analysis, quality metrics, mean error (ME), root means square error (RMSE), standard deviation (STD), and the normalized median absolute deviation (NMAD) are used. The results showed that as the temporal baseline increases the coherence values and the quality of the DEM product decrease. The RMSE values range between 2.36 m to 7.09 m in different classes. The TanDEM-X data provided high accuracies over each class range from 0.88 m to 2.40 m. Since the study area is vulnerable to sinkhole formation, sinkhole-like signals were also observed in the interferograms obtained from different and sequential pairs. The high-resolution repeat-pass PAZ data pointed out its potential for interferometric products generation

    MONITORING THE SLOWLY DEVELOPING LANDSLIDE WITH THE INSAR TECHNIQUE IN SAMSUN PROVINCE, NORTHERN TURKEY

    Get PDF
    Landslides are prominent natural events with high destructive power. Since they affect large areas, it is important to monitor the areas they cover and analyse their movement. Remote sensing data and image processing techniques have been used to monitor landslides in different areas. Synthetic aperture radar (SAR) data, particularly with the Interferometric SAR (InSAR) method, is used to determine the velocity vector of the surface motion. This study aims to detect the landslide movements in Samsun, located in the north of Turkey, using persistent scattering InSAR method. Archived Copernicus Sentinel-1 satellite images taken between 2017 and 2022 were used in both descending and ascending directions. The results revealed surface movements in the direction of the line of sight, ranging between −6 and 6 mm/year in the study area. Persistent Scatterer (PS) points were identified mainly in human structures such as roads, coasts, ports, and golf courses, especially in settlements. While some regions exhibited similar movements in both descending and ascending results, opposite movements were observed in some regions. The results produced in both descending and ascending directions were used together and decomposed into horizontal and vertical deformation components. It was observed that the western coastal part experienced approximately 4.5 cm/year vertical deformation, while the central part there is more significant horizontal deformation, reaching up to approximately 6 cm/year

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Fusion of terrasar-X and rapideye data: A quality analysis

    No full text
    ISPRS Conference on Serving Society with Geoinformatics, ISPRS-SSG 2013 -- 11 November 2013 through 17 November 2013 -- 111167This research compares and evaluates image fusion algorithms to achieve spatially improved images while preserving the spectral information. In order to compare the performance of fusion techniques both active and passive images were used. As an active image a high resolution, X-band, VV polarized TerraSAR-X data and as a multispectral image RapidEye data were used. RapidEye provides five optical bands in the 400-850 nm range and it is the first space-borne sensor which operationally gathers the red edge spectrum (690-730 nm) besides the standard channels of multi-spectral satellite sensors. The selected study area is in the low lands of Menemen (Izmir) Plain on the west of Gediz Basin covering both agricultural fields and residential areas. For the quality analysis, Adjustable SAR-MS Fusion (ASMF), Ehlers fusion and High Pass Filtering (HPF) approaches were investigated. In this study preliminary results of selected image fusion methods were given. The quality of the fused images was assessed with qualitative and quantitative analyses. For the qualitative analysis visual comparison was applied using different band combinations of fused image and original multispectral Rapid-Eye image. In the merged images color distortions regarding to SAR-optical synergy were investigated. Statistical analysis was carried out as quantitative analyses. In this respect Correlation Coefficient (CC), Standard Deviation Difference (SDD), Universal Image Quality Index (UIQI) and Root Mean Square Error (RMSE) were performed for quality assessments. In general HPF was performed best while ASMF was performed the worst in all results

    Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    No full text
    As result of the Turkey’s economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management

    Land use/cover mapping using multisensor image fusion technique

    No full text
    28th European-Association-of-Remote-Sensing-Laboratories (EARSeL) Symposium and Workshops on Remote Sensing for a Changing Europe -- JUN 02-05, 2008 -- Istanbul Tech Univ, Remote Sensing Div, ITU Maslak Campus, Istanbul, TURKEYWOS: 000342298700022Remote Sensing is an important technique for mapping land use and land cover in the vast acreages. In this sense, the fusion of optical and radar remote sensing data offers the opportunity to combine complementary sensors with different features. In this study, beside the capability of the combined multi source imagery, the contribution of SAR images to the optical images for identifying land use/cover types was investigated. For this purpose, using the synergy between SAR and Optical data, the improvement in the classification accuracy was analyzed. The study area, covering urban and agricultural areas, lies in the Menemen Plain to the west of Gediz Basin in the Aegean Region of Turkey. The satellite data used in this study are multispectral SPOT, ENVISAT-ASAR, and ALOS-PALSAR images. The 3-2-1 band combination of a SPOT-2 image was fused with C band ASAR imagery and with the new mission L band PALSAR imagery. The land use/cover types were defined from both of the fused images. In this case, since the SAR images have different bands (C band and L band) the penetration property is the key factor to see the affects on extracting information from fused images. Before the fusion application, the speckle reducing filter techniques were used for the preprocessing of SAR images. For the filtering of SAR images, kernel windows with different size were tried. Then the SPOT image was registered to SAR images. For the registration of SAR images, image to image registration method was used with a root mean square error of less than 1 pixel. A pixel based fusion method was carried out. Both of the fused images (SPOT-ASAR and SPOT-PALSAR) were classified to determine the land use/cover map. The results were compared with a classified SPOT image, which is commonly used to define land cover types. While processing the classification, the training areas were selected covering a large portion of the individual fields and were away from the field boundaries to reduce the mixed pixels. The ground truth data were used for the accuracy assessment process.European Assoc Remote Sensing Lab

    FUSION OF TERRASAR-X AND RAPIDEYE DATA: A QUALITY ANALYSIS

    No full text
    ISPRS Conference on Serving Society with Geoinformatics (SSG) -- NOV 11-17, 2013 -- Antalya, TURKEYWOS: 000358223000006This research compares and evaluates image fusion algorithms to achieve spatially improved images while preserving the spectral information. In order to compare the performance of fusion techniques both active and passive images were used. As an active image a high resolution, X-band, VV polarized TerraSAR-X data and as a multispectral image RapidEye data were used. RapidEye provides five optical bands in the 400-850 nm range and it is the first space-borne sensor which operationally gathers the red edge spectrum (690-730 nm) besides the standard channels of multi-spectral satellite sensors. The selected study area is in the low lands of Menemen (Izmir) Plain on the west of Gediz Basin covering both agricultural fields and residential areas. For the quality analysis, Adjustable SAR-MS Fusion (ASMF), Ehlers fusion and High Pass Filtering (HPF) approaches were investigated. In this study preliminary results of selected image fusion methods were given. The quality of the fused images was assessed with qualitative and quantitative analyses. For the qualitative analysis visual comparison was applied using different band combinations of fused image and original multispectral Rapid-Eye image. In the merged images color distortions regarding to SAR-optical synergy were investigated. Statistical analysis was carried out as quantitative analyses. In this respect Correlation Coefficient (CC), Standard Deviation Difference (SDD), Universal Image Quality Index (UIQI) and Root Mean Square Error (RMSE) were performed for quality assessments. In general HPF was performed best while ASMF was performed the worst in all results.Int Soc Photogrammetry & Remote Sensin
    corecore