428 research outputs found

    Spinodal-assisted crystallization in polymer melts

    Get PDF
    Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (NN \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    Modelling the Health and Economic Impacts of Population-Wide Testing, Contact Tracing and Isolation (PTTI) Strategies for COVID-19 in the UK

    Get PDF
    Background: The COVID-19 epidemic in the UK has resulted in over 280,000 reported cases and over 40,000 deaths as of 5th June 2020. In the context of a slower increase in reported cases and deaths associated with COVID-19 over the last few weeks compared to earlier in the epidemic, the UK is starting to relax the physical restrictions (‘lockdown’) that have been imposed since 23 March 2020. This has been accompanied by the announcement of a strategy to test people for infection, trace contacts of those tested positive, and isolate positive diagnoses. While such policies are expected to be impactful, there is no conclusive evidence of which approach to this is likely to achieve the most appropriate balance between benefits and costs. This study combines mathematical and economic modelling to estimate the impact, costs, feasibility, and health and economic effects of different strategies. / Methods: We provide detailed description, impact, costing, and feasibility assessment of population-scale testing, tracing, and isolation strategies (PTTI). We estimate the impact of different PTTI strategies with a deterministic mathematical model for SARS-CoV-2 transmission that accurately captures tracing and isolation of contacts of individuals exposed, infectious, and diagnosed with the virus. We combine this with an economic model to project the mortality, intensive care, hospital, and non-hospital case outcomes, costs to the UK National Health Service, reduction in GDP, and intervention costs of each strategy. Model parameters are derived from publicly available data, and the model is calibrated to reported deaths associated with COVID-19. We modelled 31 scenarios in total (Panel 2). The first 18 comprised nine with ‘triggers’ (labelled with the -Trig suffix) for subsequent lockdown periods (>40,000 new infections per day) and lockdown releases (<10,000 new infections per day), and nine corresponding scenarios without triggers, namely: no large-scale PTTI (scenario 1); scale-up of PTTI to testing the whole population every week, with May–July 2020 lockdown release (scenario 2b), or delayed lockdown release until scale-up complete on 31 August 2020 (scenario 2a); these two scenarios with mandatory use of face coverings (scenarios 3a and 3b); and scenarios 2a, 2b, 3a, 3b replacing untargeted PTTI with testing of symptomatic people only (scenarios 4a, 4b, 4c, 4d). The final 13 scenarios looked at: whole population weekly testing to suppress the epidemic with lower tracing success (scenarios 3b-Trig00, 3b-Trig10, 3b-Trig20, 3b-Trig30) and switched to targeted testing after two months when it may suppress the epidemic (scenarios 3b-Trig00-2mo and 3b-Trig30-2mo), and targeted testing with lower tracing success (scenarios 4d-Trig10, 4dTrig20, 4d-Trig30, 4d-Trig40, 4d-Trig50, 4d-Trig60, 4d-Trig70). / Findings: Given that physical distancing measures have already been relaxed in the UK, scenario 4d-Trig (targeted testing of symptomatic people only, with a mandatory face coverings policy and subsequent lockdown triggered to enable PTTI to suppress the epidemic), is a strategy that will result in the fewest deaths (~52,000) and has the lowest intervention costs (~£8bn). The additional lockdown results in total reduction in GDP of ~£503bn, less than half the cost to the economy of subsequent lockdowns triggered in a scenario without PTTI (scenario 1-Trig, ~£1180bn reduction in GDP, ~105,000 deaths). In summer months, with lower cold and flu prevalence, approximately 75,000 symptomatic people per day need to be tested for this strategy to work, assuming 64% of their contacts are effectively traced (~80% traced with 80% success) within the infectious period (most within the first two days and nearly all by seven days) and all are isolated – including those without any symptoms – for 14 days. Untargeted testing of everyone every week, if it were feasible, may work without tracing, but at a higher cost (scenario 3b-Trig00). This cost could be reduced by switching to targeted testing after the epidemic is suppressed (scenario 3b-Trig30-2mo), though we note the epidemic could be suppressed with targeted testing itself providing tracing and isolation has at least a 32% success rate (scenario 4dTrig40). / Interpretation: PTTI strategies to suppress the COVID-19 epidemic within the context of a relaxation of lockdown will necessitate subsequent lockdowns to keep the epidemic suppressed during PTTI scale-up. Targeted testing of symptomatic people only can suppress the epidemic if accompanied by mandated use of face coverings. The feasibility of PTTI depends on sufficient capacity, capabilities, infrastructure and integrated systems to deliver it. The political and public acceptability of alternative scenarios for subsequent lockdowns needs to take account of crucial implications for employment, personal and national debt, education, population mental health and non-COVID-19 disease. Our model is able to incorporate additional scenarios as the situation evolves

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    Structural basis of PROTAC cooperative recognition for selective protein degradation

    Get PDF
    Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis

    Get PDF
    Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated β-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences

    phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.

    Get PDF
    The combination of algorithms from the structure-modeling field with those of crystallographic structure determination can broaden the range of templates that are useful for structure determination by the method of molecular replacement. Automated tools in phenix.mr_rosetta simplify the application of these combined approaches by integrating Phenix crystallographic algorithms and Rosetta structure-modeling algorithms and by systematically generating and evaluating models with a combination of these methods. The phenix.mr_rosetta algorithms can be used to automatically determine challenging structures. The approaches used in phenix.mr_rosetta are described along with examples that show roles that structure-modeling can play in molecular replacement

    Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Get PDF
    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter&rsquo;s High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well‐preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.Additional co-authors: D DesMarais, M Schmidt, NA Cabrol, A Haldemann, Kevin W Lewis, AE Wang, D Blaney, B Cohen, A Yen, J Farmer, R Gellert, EA Guinness, KE Herkenhoff, JR Johnson, G Klingelhöfer, A McEwen, JW Rice Jr, M Rice, P deSouza, J Hurowit
    corecore