24 research outputs found

    Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis

    Get PDF
    Attention-deficit and hyperactivity disorder (ADHD) is a common childhood disorder with a substantial genetic component. However, the extent to which epigenetic mechanisms play a role in the etiology of the disorder is unknown. We performed epigenome-wide association studies (EWAS) within the Pregnancy And Childhood Epigenetics (PACE) Consortium to identify DNA methylation sites associated with ADHD symptoms at two methylation assessment periods: birth and school age. We examined associations of both DNA methylation in cord blood with repeatedly assessed ADHD symptoms (age 4–15 years) in 2477 children from 5 cohorts and of DNA methylation at school age with concurrent ADHD symptoms (age 7–11 years) in 2374 children from 9 cohorts, with 3 cohorts participating at both timepoints. CpGs identified with nominal significance (p < 0.05) in either of the EWAS were correlated between timepoints (ρ = 0.30), suggesting overlap in associations; however, top signals were very different. At birth, we identified nine CpGs that predicted later ADHD symptoms (p < 1 × 10–7 ), including ERC2 and CREB5. Peripheral blood DNA methylation at one of these CpGs (cg01271805 in the promoter region of ERC2, which regulates neurotransmitter release) was previously associated with brain methylation. Another (cg25520701) lies within the gene body of CREB5, which previously was associated with neurite outgrowth and an ADHD diagnosis. In contrast, at school age, no CpGs were associated with ADHD with p < 1 × 10−7 . In conclusion, we found evidence in this study that DNA methylation at birth is associated with ADHD. Future studies are needed to confirm the utility of methylation variation as biomarker and its involvement in causal pathways

    DNA methylation signatures of aggression and closely related constructs : A meta-analysis of epigenome-wide studies across the lifespan

    Get PDF
    DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 x 10(-7); Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.Peer reviewe

    Road traffic noise and children's inattention

    Get PDF
    BACKGROUND: An increasing number of children are exposed to road traffic noise levels that may lead to adverse effects on health and daily functioning. Childhood is a period of intense growth and brain maturation, and children may therefore be especially vulnerable to road traffic noise. The objective of the present study was to examine whether road traffic noise was associated with reported inattention symptoms in children, and whether this association was mediated by sleep duration. METHODS: This study was based on the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health. Parental reports of children's inattention at age 8 were linked to modelled levels of residential road traffic noise. We investigated the association between inattention and noise exposure during pregnancy (n = 1934), noise exposure averaged over 5 years (age 3 to 8 years; n = 1384) and noise exposure at age 8 years (n = 1384), using fractional logit response models. The participants were children from Oslo, Norway. RESULTS: An association with inattention at age 8 years was found for road traffic noise exposure at age 8 years (coef = .0083, CI = [.0012, .0154]; 1.2% point increase in inattention score per 10 dB increase in noise level), road traffic noise exposure average for the last 5 years (coef = .0090, CI = [.0016, .0164]; 1.3% point increase/10 dB), and for pregnancy road traffic noise exposure for boys (coef = .0091, CI = [.0010, .0171]), but not girls (coef = -.0021, CI = [-.0094, .0053]). Criteria for doing mediation analyses were not fulfilled. CONCLUSION: Results indicate that road traffic noise has a negative impact on children's inattention. We found no mediation by sleep duration

    DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan

    Get PDF
    DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.</p

    Arkeologiske undersøkelser i Tokke - Vinjevassdraget 1959.

    No full text
    Steinalderlokaliteter, hellere, tufter

    Availability, accessibility, and use of green spaces and cognitive development in primary school children

    No full text
    Green spaces may have beneficial impacts on children's cognition. However, few studies explored the exposure to green spaces beyond residential areas, and their availability, accessibility and uses at the same time. The aim of the present study was to describe patterns of availability, accessibility, and uses of green spaces among primary school children and to explore how these exposure dimensions are associated with cognitive development. Exposures to green space near home, school, commuting route, and other daily activity locations were assessed for 1607 children aged 6-11 years from six birth cohorts across Europe, and included variables related to: availability (NDVI buffers: 100, 300, 500 m), potential accessibility (proximity to a major green space: linear distance; within 300 m), and use (play time in green spaces: hours/year), and the number of visits to green spaces (times/previous week). Cognition measured as fluid intelligence, inattention, and working memory was assessed by computerized tests. We performed multiple linear regression analyses on pooled and imputed data adjusted for individual and area-level confounders. Availability, accessibility, and uses of green spaces showed a social gradient that was unfavorable in more vulnerable socioeconomic groups. NDVI was associated with more playing time in green spaces, but proximity to a major green space was not. Associations between green space exposures and cognitive function outcomes were not statistically significant in our overall study population. Stratification by socioeconomic variables showed that living within 300 m of a major green space was associated with improved working memory only in children in less deprived residential areas (β = 0.30, CI: 0.09,0.51), and that more time playing in green spaces was associated with better working memory only in children of highly educated mothers (β per IQR increase in hour/year = 0.10; 95% CI: 0.01, 0.19). However, studying within 300 m of a major green space increased inattention scores in children in more deprived areas (β = 15.45, 95% CI: 3.50, 27.40).AF is supported by MCIN/AEI/10.13039/501100011033 and by European Union “NextGenerationEU/PRTR” (PCI2021-122047-2B). RM is supported by the National Institute for Health and Care Research (NIHR) applied research collaboration for Yorkshire and Humber (NIHR200166) and by the UK Prevention Research Partnership (MR/S037527/1). Jose Urquiza is supported by Catalan program PERIS (Ref.: SLT017/20/000119), granted by Departament de Salut de la Generalitat de Catalunya (Spain). We acknowledge support from the grant CEX2018-000806-S funded by MCIN/AEI/ 10.13039/501100011033, and support from the Generalitat de Catalunya through the CERCA Program. This publication reflects only the authors’ view and the European Commission is not responsible for any use that may be made of the information it contains. We acknowledge support from Lourdes Cirugeda from ISGLOBAL and Miguel Burgaleta. This study received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 308333 – the HELIX project for data collection and analyses. The HELIX program built on six existing cohorts that received previous funding, including the major ones listed below. INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort (MOBA) Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea cohort was financially supported by European projects (FP6-Food NEWGENERIS Grant agreement ID: 16320, FP6-Food HI-WATE Grant agreement ID: 36224, FP7-ENVIRONMENT ESCAPE Grant agreement ID: 211250, FP7-ENVIRONMENT ENVIROGENOMARKERS Grant agreement ID: 226756, FP7-ENVIRONMENT ENRIECO Grant agreement ID: 226285, FP7-HEALTH CHICOS Grant agreement ID: 241604, FP7-ENVIRONMENT HELIX Grant agreement ID: 308333, H2020 LIFECYCLE Grant agreement ID: 733206, H2020 ATHLETE Grant agreement ID: 874583) and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15).The EDEN study was supported by Foundation for medical research (FRM), National Agency for Research (ANR), National Institute for Research in Public health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A), and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (FP7/2007–2013, HELIX, ESCAPE, ENRIECO, Medall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), Mutuelle Générale de l’Education Nationale a complementary health insurance (MGEN), French national agency for food security, French-speaking association for the study of diabetes and metabolism (ALFEDIAM)

    Urban environment and health behaviours in children from six European countries

    Get PDF
    Background: Urban environmental design is increasingly considered influential for health and wellbeing, but evidence is mostly based on adults and single exposure studies. We evaluated the association between a wide range of urban environment characteristics and health behaviours in childhood. Methods: We estimated exposure to 32 urban environment characteristics (related to the built environment, traffic, and natural spaces) for home and school addresses of 1,581 children aged 6-11 years from six European cohorts. We collected information on health behaviours including total amount of overall moderate-to-vigorous physical activity, physical activity outside school hours, active transport, sedentary behaviours and sleep duration, and developed patterns of behaviours with principal component analysis. We used an exposure-wide association study to screen all exposure-outcome associations, and the deletion-substitution-addition algorithm to build a final multi-exposure model. Results: In multi-exposure models, green spaces (Normalized Difference Vegetation Index, NDVI) were positively associated with active transport, and inversely associated with sedentary time (22.71 min/day less (95%CI -39.90, -5.51) per interquartile range increase in NDVI). Residence in densely built areas was associated with more physical activity and less sedentary time, and densely populated areas with less physical activity outside school hours and more sedentary time. Presence of a major road was associated with lower sleep duration (-4.80 min/day (95%CI -9.11, -0.48); compared with no major road). Results for the behavioural patterns were similar. Conclusions: This multicohort study suggests that areas with more vegetation, more building density, less population density and without major roads are associated with improved health behaviours in childhood

    Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis

    No full text
    Attention-deficit and hyperactivity disorder (ADHD) is a common childhood disorder with a substantial genetic component. However, the extent to which epigenetic mechanisms play a role in the etiology of the disorder is unknown. We performed epigenome-wide association studies (EWAS) within the Pregnancy And Childhood Epigenetics (PACE) Consortium to identify DNA methylation sites associated with ADHD symptoms at two methylation assessment periods: birth and school age. We examined associations of both DNA methylation in cord blood with repeatedly assessed ADHD symptoms (age 4-15 years) in 2477 children from 5 cohorts and of DNA methylation at school age with concurrent ADHD symptoms (age 7-11 years) in 2374 children from 9 cohorts, with 3 cohorts participating at both timepoints. CpGs identified with nominal significance (p < 0.05) in either of the EWAS were correlated between timepoints (rho = 0.30), suggesting overlap in associations; however, top signals were very different. At birth, we identified nine CpGs that predicted later ADHD symptoms (p < 1 x 10(-7)), including ERC2 and CREB5. Peripheral blood DNA methylation at one of these CpGs (cg01271805 in the promoter region of ERC2, which regulates neurotransmitter release) was previously associated with brain methylation. Another (cg25520701) lies within the gene body of CREB5, which previously was associated with neurite outgrowth and an ADHD diagnosis. In contrast, at school age, no CpGs were associated with ADHD with p < 1 x 10(-7). In conclusion, we found evidence in this study that DNA methylation at birth is associated with ADHD. Future studies are needed to confirm the utility of methylation variation as biomarker and its involvement in causal pathways
    corecore