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Abstract

Background 

Urban environmental design is increasingly considered influential for health and 

wellbeing, but evidence is mostly based on adults and single exposure studies. We 

evaluated the association between a wide range of urban environment characteristics 

and health behaviours in childhood. 

Methods 

We estimated exposure to 32 urban environment characteristics (related to the built 

environment, traffic, and natural spaces) for home and school addresses of 1,581 

children aged 6-11 years from six European cohorts. We collected information on 

health behaviours including total amount of overall moderate-to-vigorous physical 

activity, physical activity outside school hours, active transport, sedentary behaviours 

and sleep duration, and developed patterns of behaviours with principal component 

analysis. We used an exposure-wide association study to screen all exposure-outcome 

associations, and the deletion-substitution-addition algorithm to build a final multi-

exposure model.

Results

In multi-exposure models, green spaces (Normalized Difference Vegetation Index, 

NDVI) were positively associated with active transport, and inversely associated with 

sedentary time (22.71 min/day less (95%CI -39.90, -5.51) per interquartile range 

increase in NDVI). Residence in  densely built areas was associated with more 

physical activity and less sedentary time, and densely populated areas with less 

physical activity outside school hours and more sedentary time. Presence of a major 

road was associated with lower sleep duration (-4.80 min/day (95%CI -9.11, -0.48); 

compared with no major road). Results for the behavioural patterns were similar.



Conclusions

This multicohort study suggests that areas with more vegetation, more building density, 

less population density and without major roads are associated with improved health 

behaviours in childhood. 

Keywords 

Urban environment, health behaviours, multiple exposures, health patterns, childhood, 

principal component analysis 



1. Introduction

 

Risk of non-communicable diseases (NCDs) is associated with insufficient physical 

activity, increased sedentary time and inadequate sleep (Chaput et al., 2018; GBD 

2016 Risk Factors, 2018; Stiglic and Viner, 2019; World Health Organization, 2020). 

The Word Health Organization (WHO) recommendation is to achieve at least 60 

minutes a day of moderate-to-vigorous physicial activity, but less than 45% of children 

worldwide meet this recommendation (Roman-Viñas et al., 2016). Children are 

becoming more sedentary and 20% to 67.7% of European children spend two or more 

hours per day of screen time depending on the country (Whiting et al., 2021).

Vulnerability to NCDs has been attributed to adverse individual choices rather than 

recognising the importance of wider, complex systems (Knai et al., 2018). Poorer areas 

with polluted roads and low walkability, poor quality green spaces to play and exercise 

and unsafe neighbourhoods with low quality physical infrastructure are wider 

determinants that create a clustering of environmental risks that may lead to unhealthy 

behaviours and subsequent risk of NCDs and widening of health inequalities. Thus, 

there is an increasing interest in studying the contribution of the urban environment to 

unhealthy behaviours among children, and whether a change in the urban design may 

be beneficial for promoting a healthier lifestyle (Masoumi, 2017). Most of the literature 

is based on observational studies and focuses on overall physical activity and walking 

(Townshend and Lake, 2017). However, the evidence available is mostly focused on 

adults, and for children it is weak and inconsistent for some indicators (Casey et al., 

2014; Ding et al., 2011; Masoumi, 2017; Timperio et al., 2015). These discrepancies 

could be partly explained by the indicators used; some of the studies used perceived 

indicators and others objectively measured indicators. Furthermore, studies have 

mainly assessed a single urban environment indicator with respect to a single health 

behaviour, while only a few took into account multiple urban indicators (Buck et al., 

2019; Casey et al., 2014; de Bont et al., 2021; McGrath et al., 2015; Townshend and 



Lake, 2017). Exposures in the urban environment are known to be highly correlated 

(Robinson et al., 2018), so addressing each exposure in isolation is unlikely to 

adequately account for correlated co-exposures. Also, the identification of 

combinations of exposures that are more likely to affect health or health behaviours, 

may help policymakers and urban planners to tackle multiple factors to make cities 

healthier and more liveable (Nieuwenhuijsen et al., 2016). To our knowledge, no study 

has investigated the association between multiple urban indicators and patterns of 

health behaviours in childhood. 

Given the potential for the urban environment to influence child health behaviours, our 

aim was to evaluate the association between several objectively measured urban 

environment indicators from different domains, namely the built environment, traffic and 

natural spaces, and several health behaviours and their patterns, in children of primary 

school age from six European cohorts.

2. Methods

2.1. Study Population

This study is based on the Human Early-Life Exposome (HELIX) study (Maitre et al., 

2018), a collaborative project across six longitudinal population-based European birth 

cohorts: Born in Bradford (BiB; UK),  Étude des Déterminants pré et postnatals du 

développement et de la santé de l’Enfant (EDEN; France), INfancia y Medio Ambiente 

(INMA; Spain), Kaunas cohort (KANC; Lithuania), Norwegian Mother, Father and Child 

Cohort Study (MoBa; Norway), and the RHEA Mother Child Cohort study in Crete 

(Greece). 

We used data from the HELIX subcohort, consisting of an additional follow-up visit for 

the mother-child pairs between 2013 and 2016, when children were 6-11 years of age. 

Details on the selection of the subcohort population and baseline characteristics of the 

entire cohorts and subcohorts are described by Maitre et al. (2018).  The follow-up visit 



consisted of a clinical examination of the children, biosample collection, and 

questionnaires with their parents, following a common protocol across the six countries. 

Standardized data collection was performed by trained staff. Approval was obtained 

from the ethics committees in every site. All participating women provided informed 

written consent.

2.2. Urban environment

We obtained the residential and school address of each child during the HELIX follow-

up visit, and these were geocoded to derive urban environment indicators by using the 

following software: the PostgreSQL (copyright © 1996-2017 The PostgreSQL Global 

Development Group), PostGIS (Creative Commons Attribution-Share Alike 3.0 License 

http://postgis.net) and QGIS (QGIS Development Team, 2016. QGIS Geographic 

Information System). The detailed exposure assessment is described elsewhere 

(Nieuwenhuijsen et al., 2019; Robinson et al., 2018; Tamayo-Uria et al., 2019). The 

urban environment exposures derived were surrounding natural spaces, built 

environment, and traffic; their assessment is described in detail in Annex and their 

sources of data are shown in Table A.1.  The urban areas from the six cohorts were:  

BiB based in Bradford (United Kingdom), EDEN in Poitiers (France), INMA in Sabadell 

(Spain), KANC in Kaunas (Lithuania), MoBa in Oslo (Norway), and RHEA in Heraklion 

(Greece).

Surrounding natural space indicators included the Normalized Difference Vegetation 

Index (NDVI), distance to major green space, and presence of major green and blue 

spaces. The Normalized Difference Vegetation Index (NDVI) is an indicator of 

greenness (with higher numbers indicating more greenness) (Nieuwenhuijsen et al., 

2014; Rhew et al., 2011). NDVI were derived from satellite images (Landsat 4-5 TM, 

Landsat 7 ETM+, and Landsat 8 OLI/TIRS) with 30 m x 30 m resolution. Best images 

for one date of the follow-up period were selected according to the following criteria: a) 

less than 10% are covered by clouds; b) Standard Terrain Correction (Level 1T); and c) 



greenest period of the year (spring in RHEA and INMA, and summer in KANC, MOBA, 

BIB and EDEN). We used the 100-m buffer for NDVI. As proxies of access to natural 

spaces, we calculated the distance from home and school to the nearest major green 

space (parks or countryside) and the presence of an area (greater than 5,000 m2) 

green or blue (bodies of water) as dichotomous variable (present or not within a 300-m 

buffer (approximately within 15 minutes walk for children)) from Europe-wide or local 

topographical maps (Agency, 2010; Smargiassi et al., 2009).

Built environment factors were calculated from topological maps obtained from local 

authorities or from Europe-wide sources. Buffers of 100 and 300 meters were used, but 

in this study only the 300m buffer estimates were included due to the high correlations 

between variables. We calculated building density (within the 300-m buffer) by dividing 

the area of building cover (km2) by the area of buffer (km2). We calculated population 

density as the number of inhabitants (per km2) surrounding the home and the school 

area, and the street connectivity as the number of intersections by the area (km2) inside 

the 300-m buffer. We calculated a facility richness index based on the number of 

different facility types (e.g. community services, schools, financial institutions, 

entertainment, parks, and recreation) divided by the maximum potential number of 

facility types specified in a buffer of 300 m (score range from 0 to 1) (Agency, 2010; 

Smargiassi et al., 2009). A facility density index was calculated as the number of 

facilities divided by the area of the buffer (number of facilities/km2). A higher value 

indicates a greater availability of different facility types. Mixed land use was calculated 

by the Shannon’s Evenness Index as the proportional abundance of each type of land 

used within the 300-m buffer (score range from zero to one) (Shannon, 2001). We 

multiplied each proportion of land use type by its logarithm and divided the sum of all 

land use type products by the logarithm of the total possible land use types. Access to 

public transport was calculated as the number of bus stops and meters of bus lines 

inside 300-m buffer based on maps from local authorities and OpenStreetMap® 

(“OpenStreetMap,”). We created an indicator of walkability, based on previously 



developed indicators (Duncan et al., 2011; Frank et al., 2006), calculated as the mean 

of the sum of the deciles of population density, street connectivity, facility richness, and 

land use within 300-m buffers (score range from zero to one). 

Traffic density indicators were calculated from road networks maps following the 

protocol of the ESCAPE project and using a 100-m buffer (Beelen et al., 2013; Eeftens 

et al., 2012). We included in this analysis the following traffic indicators: traffic density 

on the nearest road, total traffic load on all roads, presence of a major road, and 

inverse distance to the nearest major road.

2.3. Outcome assessment 

Information on health behaviours was obtained through standardized questionnaires at 

age 6-11 years, reported by the parents. It included moderate-to-vigorous physical 

activity, physical activity outside the school hours, sleep duration, sededentary activies  

and active transport from home to school, all reported as minutes per day. 

2.3.1 Physical activity

The questionnaires collected information on frequency, intensity, and duration of time 

spent regularly performing physical activity during school hours, outside the school 

hours at weekdays and during weekends. We calculated physical activity outside the 

school hours (in min/day) based on the time spent playing outside the school hours and 

at weekends (including light, moderate and vigorous activity). We obtained total 

moderate-to-vigorous physical activity (min/day) as the amount of time children spent 

doing physical activities (during school hours, outside school, and at weekends) with 

intensity above three metabolic equivalents (METs) (Ridley et al., 2008).

2.3.2 Sleep duration

In the questionnaires, the parents reported the earliest and latest bedtimes and wake-

up times during weekdays and weekends, reflecting usual sleep patterns. Based on the 

average bedtime and wake-up time, we calculated the average nighttime sleep 



duration (weighted average of weekdays and weekend sleep duration), and it is 

expressed as min per day.

2.3.3 Sedentary behaviours

We asked parents to report their children’s time spent watching television, playing 

computer or video games and other sedentary activities during weekdays and 

weekends. We considered sedentary activities as “any waking behaviour characterized 

by an energy expenditure <1.5 metabolic equivalent tasks (METs) while in a sitting or 

reclining posture” by the Sedentary Behaviour Research Network. We calculated the 

average time spent daily (in minutes) watching television, playing computer or video 

games and other sedentary activities (eg. reading, puzzles),  and the sum of these 

activities as total sedentary time (Sedentary Behaviour Research Network, 2012).

2.3.4 Active transport from home to school

We also calculated daily time performing active commuting from home to school based 

on the data obtained through the QGIS, which is a free and open source Geographic 

Information System (Version 1.8.0 – http://www.qgis.org/en/site/). The participants 

were asked to draw the common route they performed from home to school and 

indicate the mode of transport. Based on this information we calculated daily active 

transportation based on the time spent walking and cycling to school. 

2.3.5 Health behaviours patterns 

We performed a principal component analysis (PCA) of the health behaviour outcomes 

including physical activity outside the school hours, sleep duration, television time, time 

playing computer games, time performing other sedentary activities, and active 

transport. We used the “FactoMineR” command in the base R package. Outcomes 

were centred by the mean and unit variances scaled. After varimax rotation three 

principal components were retained for the analysis based on eigenvalues (>1) and the 

scree test, and explained 56% of cumulative variance. Each participant received a 

http://www.qgis.org/en/site/


score for each of the principal components. These principal components were used in 

the analysis as outcome patterns, in addition to the individual outcomes.

2.4 Covariates

We collected information on key covariates during pregnancy and in the subcohort 

follow-up assessment. Covariates included are maternal educational status (defined as 

the highest level of education reporter by the mother, and it was categorized according 

to the International Standard Classification of Education (ISCED) as: low, middle, high 

education) (Eurostat, 2016), family affluence score (as a measure of the family’s 

economic capital. We calculated based on the responses to four questions asked to the 

participants: a) Does your family own a car, van or truck?; b) Do you have your own 

bedroom for yourself?; c) During the past 12 months, how many times did you travel 

away on holiday with your family?; d) How many computers does your family own?) 

(Boyce et al., 2006; Liu et al., 2012), area level socio-economic status (SES) (it was 

defined based on area level measures of deprivation or SES indicators for the home 

address of the participant in tertiles, 1st tertile less deprivated, 3rd tertile most 

deprivated, based on the entire cohort distribution (Maitre et al., 2018). For the BiB 

study the UK Index of Multiple Deprivation was used (Department for Comminities and 

Local Governments, 2015), for Eden the French European deprivation index score 

(Pornet et al., 2012), for INMA cohort we used the Spanish Urban vulnerability index at 

census level (Department of Architecture, 2001). For MoBa, we used tertiles of average 

personal income of the area (Norway, 2013). For KANC and RHEA the proportion with 

high education of the voting district and aggregated lower census area was used, 

respectively (Authority, 2001; Smith et al., 2017). Other variables collected are child 

age (years) and child sex (male/female). 

2.5 Statistical Analysis 



We calculated the Pearson’s correlations between continuous exposures and we 

removed those indicators that had a high correlation (above 0.80) with other spatial 

indicators. We focused on a reduced urban environment dataset of 32 variables and 

we explored the distribution of these variables before imputation, and we transformed 

the variables that showed skewed distributions or we categorized them if normality 

could not be achieved for the imputation process. Then the distribution of all 

transformed variables was examined to ensure that transformation did not lead to 

extreme or influential observations.  Missing rates in the exposures ranged from 0.4% 

in Facility density and Population density (at home) to 44.3% in Accessibility (bus lines) 

at school. The mean percentage of missing values among the exposures was 10.9%. 

We used multiple imputation to deal with missing values in exposures and covariates 

(Table A.2) by using the chained equations method, as described in detail elsewhere 

(Tamayo-Uria et al., 2019; White et al., 2011). In total, 20 imputed datasets were 

generated using the MICE package in R. This approach has been considered superior 

to excluding the entire cohort or the exposure (Held et al., 2016; Jolani et al., 2015).

We standardised all the exposures by the interquartile range (IQR) and first used an 

exposome-wide association study (ExWAS) approach to screen associations for all the 

exposures independently. This approach consisted of a exposure-by-exposure 

estimation of the exposure-outcome association by independent linear regression 

models adjusting for potential confounders. To correct for multiple hypothesis testing, 

each p value was compared with a threshold, defined as 0.05 divided by the effective 

number of tests (Li et al., 2012), the corrected p value was 0.003 in the analysis with 

home and school exposures (i.e. moderate-to-vigorous physical activity, physical 

activity outside school hours, and active transport), and 0.005 in the analysis with only 

home exposures (i.e. sleep duration, sedentary behaviours and patterns (PCAS)). 

We then used the deletion/substitution/addition (DSA) algorithm method to select a 

reduced number of exposures and build a final multi-exposure model (Sinisi and Van 



Der Laan, 2004). This method showed better model selection efficiency (particularly a 

lower false positive rate), in comparison with other linear regression-based methods in 

exposome studies, including a running multiple exposure model based on ExWAS 

results, as described by Agier et al. (Agier et al., 2016). The DSA algorithm method is 

an iterative process based on deletion of variables from those selected in a model, 

substitution of the selected variables by unselected ones or addition of new variables, 

with the purpose of selecting a final model by minimizing the value of the root mean 

squared error of predictions using 5-fold cross-validated data. We fitted the DSA 50 

times on the data using different seeds to stabilize the cross-validation results. We 

retained for our final multiexposure regression model the exposures selected in at least 

10% of the DSA runs. This cut-off was arbitrary and selected a priori to reduce false 

positive findings. We checked for potential multicollinearity among the selected 

exposures in the final multiexposure model, based on the correlation between the 

variables, the variance inflation factor (VIF), and the stability of the results. In our 

analysis, multicollinearity occurred only for road traffic load and was excluded from the 

final multiexposure models of sleep duration. For the rest of the variables there was 

little evidence of collinearity in the multiple exposure models in that VIFs were below 

<4. We applied DSA to the 20 imputed data sets by stacking them one after the other 

using weights, and polynomials or interaction terms were not allowed (Wood et al., 

2008).

All single and multiexposure models were adjusted for cohort, child age (years), child 

sex (male, female), maternal education (low, middle, high), family affluence score (as a 

measure of the family’s economic capital) and area level SES (deprivation index), 

based on the literature. 

2.5.1 Sensitivity analyses

We performed the following sensitivity analyses: a) We repeated the multiexposure 

model restricted to complete cases; b) We ran the final multiexposure model by cohort 



and evaluated between-cohort heterogeneity of associations (using the I2 

statistic);(Higgins and Thompson, 2002) c) We stratified the multiexposure model by 

sex to obtain sex-specific estimates and we included an interaction term in the model to 

test for potential effect modification by sex; d) We stratified the multiexposure model by 

maternal education (low/medium and high) and by area level SES to examine the 

robustness of results across socio-economic classes, and we included an interaction 

term in the model to test for a potential interaction; e) We explored the role of the 

distance from home to school (calculated from the routes drawn in the QGIS) in 

analyses of the active transportation outcome, by adding this variable in a 

complementary model and stratifying by distance below 800m and above 800m to 

obtain specific estimates (Timperio et al., 2006). We tested for potential interactions. 

All analyses were run under R version 3.6.1 (R Foundation, Vienna, Austria).

3 Results

3.1 Descriptives

Our study included 1581 children from six European cohorts (Table 1). Children were 

on average (SD) 8.19 (1.5) years old (cohort variations shown in Table A.3). Children 

performed 53 (39.7) minutes of physical activity outside the school hours, 614.97 (41.3) 

min of sleep, 224 (92.2) minutes of sedentary activities and 6.90 (8.4) minutes of active 

transport per day. 36.4% met the WHO recommendations of at least 60 minutes per 

day of moderate-to-vigorous physical activity. 58.6% had more than 2 hours per day of 

screen time. There was variation in health behaviours across cohorts (Table A.4). 

Spanish children (INMA) had the greatest duration of physical activity outside the 

school (65 (SD 37.2) min/day) and children from the French cohort (EDEN) the least 

(28 (22.6) min/day). Children from BiB cohort were the ones with the greatest TV 

watching time (115.7 (58.67) min/day) and children from MoBa the least (92.4 (47.94) 

min/day). Active transport ranged from 13 (9.9) min/day in MoBa to 1.9 (3.9) min/day in 

RHEA.



The urban exposures and their correlations are shown in Table 2 and Figure A.1, with 

differences across cohorts (Table A.5). MoBa and EDEN had the highest mean NDVI. 

The southern cohorts (INMA and RHEA) had more surrounding traffic load close to 

home compared to the other cohorts. INMA had the highest population and building 

density (mean 16,000 inhabitants/m2 and 350,000 m2 built/km2). The mean walkability 

index was similar across cohorts, with INMA having the highest mean score (0.41 (SD 

0.17)) and EDEN the lowest (0.28 (0.08)). 

3.2 Exposome-wide association study and deletion/substitution/addition 

(DSA) algorithm

Seven environmental exposures were associated with moderate-to-vigorous physical 

activity in the ExWAS analysis (p<0.05), but only the association between home NDVI 

passed the multiple testing corrected p-value of 0.003 (8.72 min/day, 95%CI 3.22, 

14.21 per IQR increase); Figure 1A; Table A.6). This association was attenuated in 

the final multi-exposure model (β 7.00 min/day, 95%CI -0.38, 14.38) (Table 3). In this 

multi-exposure model, building density was associated with overall moderate-to-

vigorous physical activity (β 6.39 min/day, 95%CI 1.80, 10.98). 

For physical activity outside the school hours, seven urban exposures showed 

associations in the ExWAS (Figure 1B; Table A.7). In the multi-exposure model, 

population density was negatively associated in the time performing physical activity 

outside the school hours (β -3.80, 95%CI -6.97, -0.64), and building density more 

physicial activity (β 6.59, 95%CI 2.33, 10.86; Table 3). 

In the ExWAS analysis (Figure 1C; Table A.8), nine exposures were associated with 

active transport, three passing the multiple correction threshold: greater facility richness 

and density were associated with more active transport, and greater land use diversity 

with a decrease of active transport. In the multi-exposure model, greater distance to the 

nearest green space, land use diversity within home area, and street connectivity 

around the school were associated with less active transport, while higher facility 



density around the home area was associated with more active transport (Table 3). 

The sizes of these associations were all around 1 min/day.

Home proximity to a major road was the only variable associated with sleep duration, 

with a decrease of -4.80 (95%CI -9.11,-0.48) min/day, both in the ExWAS and in the 

multi-exposure model (Figure 1D; Table A.9; Table 3). 

Some urban indicators were related to sedentary behaviours, as shown in Figure 1E 

and Table A.10. Higher vegetation (home NDVI) was associated with a decrease of -

20.40 min/day (95%CI -32.98, -7.82) overall sedentary time in the ExWAS analysis, 

similar decreases was observed in the sedentary sub-activities (TV viewing and 

computer games (data not shown)). In multi-exposure models, higher vegetation was 

associated with lower sedentary time (Table 3). Population density was associated with 

higher sedentary time in the ExWAS, but this association was attenuated in the multi-

exposure model. Building density was associated with a decrease of sedentary time in 

the multi-exposure models (β -10.55 min/day, 95%CI -20.27, -0.82). These patterns of 

associations were similar to the results for TV viewing (data not shown).

To study the health behaviours in combination, we performed PCA and the loadings 

are shown in Figure 2. PC1 (26.2% of variance) described higher moderate-to-

vigorous physical activity and higher physical activity outside the school hours. This 

pattern was associated with 5 exposures in the ExWAS, but none passed the multi-

testing correction threshold (p<0.005) (Figure 2A and Table A.11). Some of these 

associations remained similar in the multi-exposure model (e.g. population density and 

street connectivity), however other associations were attenuated, like NDVI. Building 

density was associated with an increase in PC1 score (β 0.16, 95%CI 0.05, 0.28) in the 

multi-exposure model (Table 4). PC2 (19.7 % of variance) described more screen time 

and less sleep, and was associated with two exposures in the ExWAS:  population 

density (β 0.09, 95%CI 0.02, 0.15) and NDVI (β -0.17, 95%CI -0.31, -0.03) (Figure 2D, 

Table A.11). The estimates for these associations were weaker in the multi-exposure 



model and no longer statistically significant. PC3 (15.3 % of variance) described more 

time of active transport and sleep duration, and less other sedentary behaviours. In the 

ExWAS, accessibility to public transport, facility richness and density were associated 

with an increase in PC3 score, and land use with a decrease (Figure 2F, Table A.11). 

In the multi-exposure models, distance from home to green spaces and walkability 

index decreased PC3 score, and facility density was associated with higher PC3 score.

3.3 Sensitivity analyses

The results from our sensitivity analysis using complete case analysis were similar to 

the imputed analysis (Table A.12 and Table A.13). The observed associations were 

consistent across cohorts (Figure A.2),  with little evidence of heterogeneity (I2 

between cohorts from 0 to 19.1%) for all the outcomes, except for active transport, for 

which heterogeneity was moderate to high for home facility density (I2=61.2%) and 

home land use diversity (I2= 77.5%). The association between home facility density and 

active transport, and the association between home building density and moderate-to-

vigorous physical activity were driven by BiB and MoBa. The only sex-interaction 

observed was for the association between distance to green spaces and active 

transport, where the effect was stronger in girls (β -1.55 min/day, 95%CI -2.58, -0.51) 

compared to boys (β -0.23 min/day, 95%CI -1.24, 0.78; p for interaction 0.02) (Table 

A.14). No education or SES interactions were observed (Table A.15 and Table A.16). 

The associations between urban environment indicators and active transport remained 

significant when adjusting for distance from home to school (Table A.17). Stratifying by 

distance from home to school, the estimates for land use within home area and street 

connectivity within school area were stronger if the school was further from home (β -

5.55 min/day, 95%CI -2.54, -0.56; p for interaction <0.001, and β -1.38 min/day, 95%CI 

-2.41, -0.35: p for interaction <0.001). 



4. Discussion

In this multicohort Europe-wide study, we identified several urban environment 

characteristics associated with healthy life habits in children. Our findings, which have 

implications on urban planning policy, suggest that areas of the cities with more 

vegetation, more building and facility density, less population density and without major 

roads may be associated with for more physical activity, less sedentary behaviours, 

more sleep and more active transport. 

Our results suggest an increase of physical activity in association with higher 

vegetation both at home and school, in line with previous studies (Ding et al., 2011; 

Jansen et al., 2018). However, these associations were weaker in multi-exposure 

models, indicating a potential residual co-exposure confounding, for example by 

population and building density. Time spent on sedentary behaviours was inversely 

associated with indicators of natural spaces in both the ExWAS and multi-exposure 

models. This was the case for overall sedentary behaviours and especially for the 

screen time pattern, consistent with results from a  previous Spain-based cross-

sectional study that described that children living in homes with more surrounding 

vegetation had lower probability of excessive screen time (Dadvand et al., 2014). A 

more recent Spanish cross-sectional study did not find associations between urban 

environment characteristics and weight-related behaviours in children, including 

sedentary behaviour and screen time (de Bont et al., 2021).

The results of the multiexposure models showed that greater building density was  

associated with an increase in physical activity (moderate-to-vigorous and outside the 

school time) and a decrease in sedentary time in children, in contrast to the null results 

observed in the single-exposure models. We did not find sign of collinearity, but these 

results should be interpreted cautiously. The findings regarding building density are 

consistent with previous studies reporting areas of the cities with more building density 

related to higher physical activity levels in adults and children (Bringolf-Isler et al., 



2014; McGrath et al., 2015). For example, Bringolf-Isler et al., found that higher 

building density was associated with higher moderate-to-vigorous activity in Swiss 

children aged 4 to 17 years. In this study, the authors argued that higher building 

density represents centrally located areas, which are of particular importance for 

secondary school children (Bringolf-Isler et al., 2014). 

In contrast, more population density was associated with lower physicial activity outside 

school hours with no sign of multicollinearity in the models. In our study sites, 

correlations between building and population density were low-to-moderate, indicating 

different characteristics of the areas of the cities. In fact, the literature regarding 

population density and health behaviour shows mixed findings in adults and children 

(Bringolf-Isler et al., 2014; Buck et al., 2019; Carlin et al., 2017; Saelens et al., 2012; 

Wang et al., 2019; Xu et al., 2010; Zou et al., 2020). A recent review found 16 studies 

reporting higher population density encourage more active behaviours, whereas in 

three studies were inversely associated and eight studies showed null associations 

(Zou et al., 2020). Interestingly many of the studies reporting positive associations were 

focused on active transport, indicating moderate-to-vigorous physical activity and active 

transport may have different urban determinants. Another reason for the mixed findings 

could be related to the higher mean population density in European cities compared to 

American and Australian cities, that most of the evidence is based on, as previously 

observed by Wang et al. (Wang et al., 2019; Xu et al., 2010). This may suggest that the 

association between population density and behaviour may be context-specific. 

Futhermore, more populated areas in Europe may represent areas with more street 

connectivity and more traffic load, that may be perceived as unsafe, act as barriers and 

discourage physical activity. In fact, street connectivity at home and school, and 

proximity to a road also showed an inverse association with physical activity in our 

ExWAS analysis; however, they attenuated in the multi-exposure models, probably due 

to confounding by the other exposures. This shows the importance of taking account of 

multiple exposures in the built environment.  



Other built environment characteristic such as facility density and mixed land use were 

associated with active transport. Mixed land use is usually correlated to greater 

physical activity in adolescents and adults. Shops and services may stimulate walking 

in these populations. In children the results are mixed, though (D’Haese et al., 2015; 

Kerr et al., 2016; Molina-García et al., 2020), and in our study greater land use diversity 

was associated with less active transport. This age-specific effect of mixed land use 

was previously described by McGrath, they argued that these areas may be designed 

for adults, and parents may be concerned for the safety of their children (Aranda-

Balboa et al., 2020; McGrath et al., 2015). Another potential explanation for these 

disparities of result is that some of the studies used perceived mixed land use-access 

instead of objective measures (Kerr et al., 2016; Vanwolleghem et al., 2016), and 

perception of the land use may play a major role as shown by Cerin et al., in their 

mediation study (Cerin et al., 2018). Moreover, the mixed-land use indicator may not 

represent more facilities. In fact, facility density was positively associated with active 

transport in our study. 

Living closer to a major road was associated with shorter sleep duration in childhood in 

our study. This is likely an indirect association and the most probable mechanism 

explaining this association is the noise generated by the traffic that affects the quality 

and duration of the sleep in children and adults (Basner and McGuire, 2018). This 

finding reinforces the previous findings on the harmful effects of traffic on sleep that 

can lead to behavioural problems (Tiesler et al., 2013). Traffic-related exposure 

patterns, including higher levels of road traffic, noise and air pollution, have also been 

related to childhood obesty risk, with sleep being one possible mechanism (de Bont et 

al 2021). 

Our study has several main strengths. First, our comprehensive evaluation of health  

behaviours goes beyond most other studies which only included physical activity, and 

also included the evaluation of other behavioural domains (e.g. screen time and sleep) 



and of their combination. Second, we used of a broad range of built environment 

exposures based on geospatial modelling using home and also school addresses; 

these objective measures reduce the potential bias of self-reported measures, 

compared to previous research. Third, we used qGIS as a novel tool to obtain an 

objective measure of active transport from home to school. Fourth, this study is based 

on a set of complementary statistical approaches based on previous simulation studies 

including the ExWAS method, characterized by a high sensitivity and low false-

negative rate, and the DSA method with a low false-positive rate and takes into 

account the potential confounding by multiple exposures (Agier et al., 2016). Last, our 

study was performed in six different cohorts across Europe, which allowed us to use 

comparable variables across diverse countries and to describe the child health 

behaviour patterns across Europe and test if the associations are robust in all the 

cohorts. This is especially relevant since previous research has been focused mainly in 

the United States and Australia where city design is different from Europe. 

This study also has several limitations. First, we used subjective measures of 

behaviours based on questionnaires, except for active transport. The age range 

included in this study is from 6 to 11 years, and parents may not be aware of their 

offspring’s behaviours especially of the oldest children in this study, and their 

perception may affect the quantification of the physical activity and other behaviours 

(Verbestel et al., 2015). However, the variations in behavioural patterns observed 

between our 6 cohorts did not appear to be easily explained by age or geographical 

location of the cohort (e.g. northern vs southern European cohorts). Future studies may 

consider the inclusion of objective measures, such as devices to estimate sleep 

duration and sedentary activity. Second, this study is cross-sectional. Longitudinal 

designs could allow for studying the change in urban environment domains and their 

impact on health  behaviours and improving any causal interpretation of the results. 

Third, this study can be affected by self-selection bias, for example families who like 

physical activity may choose to live closely to high vegetation areas. Fourth, levels of 



measurement error may be different among the exposures, and we did not attempt to 

correct for these differences in this study.  Five, residual confounding is possible. Even 

though we have taken into account different measures of SES in the analysis, there 

may be unmeasured social factors related to the neighbourhood self-selection and 

awareness of healthy behaviours (Lamb et al., 2020). However, results were robust 

when adjusting for family affluence score and area level SES, and when stratifying by 

maternal education and area level SES. Therefore, any potential residual confounding 

is expected to have little effect. Finally, we recognize that the small  HELIX subcohort 

(N around 200 in each country) is unlikely to be representative of the general 

population in each country, both in terms of health behaviours and in terms of the 

spatial areas covered; this limits the generalisability of results, as well as our ability to 

compare across different cities. We therefore recommend follow up of these findings in 

larger pan-European studies. 

A high proportion of the children included in this study (63.6%) did not meet the current 

WHO guidelines for moderate-to-vigorous physical activity and 58.6% spent more than 

two hours per day watching TV or playing computer and video games (World Health 

Organization, 2020). These proportions are higher than the figures reported by WHO 

European Childhood Obesity Surveillaince Initiative for children of similar age range 

(20.6% and 38.2%, respectively)(Whiting et al., 2021). Futhermore, active transport 

was considerably low, being the daily average time spent from home to school of 6.9 

minutes. 

Our results highlight the importance of early life environmental exposures on 

establishing risk factors for subsequent NCDs. Public health interventions tend to focus 

on influencing individual behaviours rather than tackling the wider system determinants 

that drive these behaviours and widen health inequalities. Our evidence reinforces the 

need for policymakers to prioritise urban design to improve children’s health-promoting 

behaviours and prevent adult ill-health. This is very cost-effective as it requires single 

investment that affect large number of people over time, as compared to school based 



physical activity interventions for instance (Zapata-Diomedi et al., 2019). Our study 

found the relationship between built environment and health behaviours to be similar 

across the cohorts in six countries, indicating investment in health-promoting urban 

design may benefit children’s health across Europe (Sallis et al., 2016). Our study also 

indicates that these designs need to be comprehensive and take into account several 

urban indicators. One of the strategies should be improving vegetation in the streets 

and green spaces. If they are more attractive and well maintained, it may improve the 

perception of safety of parents and children (Kruizse et al., 2019). One of the most 

common strategies is to promote active commuting and public transportation use. Even 

though we did not observe an association between transport accessibility and health 

behaviour in childhood, this initiative may be positive to reduce traffic load and the 

subsequent air pollution and noise.   

Future research is needed, including other urban indicators that may be relevant for 

children and adolescent behaviours (such as: pedestrian zones and sport facilities (e.g. 

tennis table and volleyball courts)), the combination of perceived and objective 

measures of the urban environment (such as crime and attractiveness), the use of 

objectively measures of health  behaviours, including more countries from Eastern 

Europe and other areas less studied, and implement longitudinal studies and 

intervention studies to assess the change in the urban environment and its impact on 

lifestyle (Aranda-Balboa et al., 2020; Smith et al., 2020).

5. Conclusions

This comprehensive and systematic study suggests that more vegetation, more 

building and facility density, less population density and greater distance from major 

roads may be associated with health-promoting behaviours in childhood. These 

findings reinforce the importance of urban design in promoting a healthier future for 

children.
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Table 1. Description of the study population (N=1,581).
 N (%) Mean (SD)

Cohort
BIB (UK) 229 (14.5)

EDEN (France) 195 (12.3)

INMA (Spain) 492 (31.1)

KANC (Lithuania) 190 (12.0)

MoBa (Norway) 288 (18.2)

RHEA (Greece) 187 (11.8)

Child sex
Female (%) 728 (46.1)

Male (%) 853 (53.9)

Child age, years ± SD 8.19 (1.5)

Family Affluence Score, score ± SD 5.33 (1.4)

Area Level SES
1st Tertile (%) 601 (40.6)

2nd Tertile (%) 568 (38.3)

3rd Tertile (%) 312 (21.1)

Maternal education level
Low (primary school) (%) 233 (15.7)

Middle (secondary school) (%) 514 (34.7)

High (University or higher) (%) 733 (49.5)

Moderate-to-vigorous physical activity (min/day) 49.5 (40.4)

Moderate-to-vigorous physical activity ≥ 60 (min/day), (%) 576 (36.4)

Physical activity outside the school hours (min/day) 52.7 (39.7)

Sleep duration (min/day) 614.97 (41.3)

Sedentary time (min/day) 224.3 (92.2)

Television time (min/day) 103.7 (53.9)

Computer games (min/day) 42.1 (41.5)

Other sedentary activities (min/day) 78.5 (56.9)

Active transport  (min/day) 6.9 (8.4)

Abbreviations: BiB, Born in Bradford study cohort; EDEN, Etude de ohorte généraliste, menée en 

France sur les Déterminants pré et post natals précoces du développement psychomoteur et de la 

santé de l’Enfant study cohort; INMA, INfancia y Medio Ambiente study cohort; KANC, Kaunas 

study cohort; MoBa, the Norwegian Mother, father and Child Cohort; RHEA, RHEA Study Mother 

and Child Cohort, SES, Socio-economic status.



Table 2. Exposure levels at home and school

Exposure All cohorts
Home
NDVI-100m,  mean ± SD 0.42±0.17

Green distance, mean ± SD 190±180

Green spaces Yes (vs. No), n (%) 1153 (78.38)

Blue spaces Yes (vs. No), n (%) 107 (7.27)

Road traffic load-100m, mean ± SD 1600000±3400000

Major road-100m (vs. no major road), n (%) 326 (36.30)

Traffic density on nearest road, mean ± SD 10000±15000

Inverse distance to nearest road, mean ± SD 0.14±2.50

Population density, Inhabitants/ km2 ± SD 8200±9900

Building density-300m, mean m2 built/km2  ± SD 200000±150000

Connectivity, mean ± SD 160±100

Accessibility (bus lines-300m), mean ± SD 691 (78.26)

Accessibility (bus stops-300m), mean ± SD 14.00±13.00

Facility richness-300m, mean± SD 0.07±0.07

Facility density 300m, mean± SD 30.00±44.00

Land use, mean ± SD 0.40±0.13

Walkability index, mean ± SD 0.34±0.10

School
NDVI-100m,  mean ± SD 0.39±0.14

Green distance, mean ± SD 200±200

Green spaces Yes (vs. No), n (%) 1122 (76.69)

Blue spaces Yes (vs. No), n (%) 105 (7.18)

Major road-100m (vs. no major road), n (%) 279 (31.00)

Inverse distance to nearest road, mean ± SD 0.03±0.10

Population density, Inhabitants/ km2 ± SD 7100±7500

Building density-300m, mean m2 built/km2  ± SD 220000±150000

Connectivity, mean ± SD 160±95

Accessibility (bus lines-300m), mean ± SD 706 (80.23)

Accessibility (bus stops-300m), mean ± SD 14.00±12.00

Facility richness-300m, mean± SD 0.09±0.08

Facility density 300m, mean± SD 47.00±78.00

Land use, mean ± SD 0.42±0.14

Walkability index, mean ± SD 0.35±0.09

Abbreviations: NDVI: Normalized Difference Vegetation Index; SD: Standard 

deviation.



Figure 1. Association between the urban environment exposures and behavioural patterns in childhood in 
single-exposure ExWAS model.  Volcano plot showing significance (p-value) against beta coefficient. 
Black dashed horizontal line at p-values of 0.05; red solid horizontal line at TEF of 0.003 [(A), (B), (C)] 
and 0.005 [(D), (E)].  Beta estimates for all exposures are shown in Tables A.6-10. Models adjusted for 



cohort, child age, child sex, maternal education, family affluence score and area level SES. Note: Beta 
coefficient for change in outcomes compared with reference category for the categorical variables. For 
continuous variables, beta estimates are calculated per interquartile range increase in exposure. Acc 
Lines: Accessibility (bus lines-300m); Acc Point: Accessibility (bus stops-300m); Dist Inv Near Road: 
Inverse distance to nearest road; Green dist: Green distance; H: Home; NDVI: Normalized Difference 
Vegetation Index (100m); S: School; TEF, threshold for effective number of test (i.e., p-value correction 
for multiple testing).



Table 3. Analysis of the association between home and school exposures, and single lifestyle behaviours in childhood (N=1,581). Only exposures selected 
in at least one DSA are shown. 

Moderate-to- 
vigorous physical 
activity (min/day)

Physical activity 
outside the school 

hours (min/day)

Active transport 
(min/day)

Sleep duration
(min/day) 

Sedentary time 
(min/day)

Exposure (IQR or category)a
Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Estimate 

(95% CI) 

Home 

NDVI-100m (0.31) 7.00 (-0.38, 14.38) 5.70 (-1.43, 12.83) ns ns -22.71 (-39.90, -5.51) 

Green distance (213.25 m) ns ns -0.94 (-1.67, -0.22) ns ns 

Road traffic load-100m (1,974,930 vehicles/day 

m)

ns ns ns * -5.58 (-14.33, 3.17)

Major roads-100m (vs. no major road) ns ns 0.69 (-0.26, 1.64) -4.80 (-9.11, -0.48) ns 

Traffic density on nearest road (11,033.1 

vehicles/day)

-2.99 (-6.78, 0.81) ns ns ns -6.64 (-15.57, 2.30)

Inverse distance to nearest road (0.04 m-1) -2.04 (-4.98, 0.91) -1.87 (-4.75, 1.02) ns ns ns

Population density (7,550.89 people/km2) -1.37 (-4.40, 1.65) -3.80 (-6.97, -0.64) ns ns 5.53 (-1.60, 12.67) 

Building density-300m (174,887.9 m2 built/km2) 6.39 (1.80, 10.98) 6.59 (2.33, 10.86) ns ns -10.55 (-20.27, -0.82) 

Connectivity (142.38 number of 

intersections/km2)
-2.30 (-6.64, 2.03)

-4.25 (-8.66, 0.15) 0.63 (-0.25, 1.50) ns ns

Accessibility (bus lines-300m)  1 or more (vs. 

none)
-4.95 (-10.48, 0.58)

-3.83 (-9.69, 2.03) ns ns ns



Accessibility (bus stops-300m) (17.8 bus stops/ 

km2)

ns ns 0.17 (-0.08, 0.42) ns ns

Facility density 300m (38.90 facilities/km2) ns ns 1.25 (0.41, 2.09) ns 5.96 (-4.78, 16.70) 

Land use (0.19) ns ns 1.25 (0.41, 2.09) ns 5.96 (-4.78, 16.70) 

Walkability index (0.15) ns 4.44 (-0.41, 9.28) ns ns ns

School 

NDVI-100m (0.24) 5.14 (-0.84, 11.11) ns ns - -

Green distance (223.46 m) ns ns 0.54 (-0.10, 1.18) - -

Green spaces Yes (vs. No) -5.06 (-10.11, 0.00) ns ns - -

Blue spaces Yes (vs. No) -6.27 (-13.55, 1.01) ns ns - -

Inverse distance to nearest road (0.02 m-1) ns ns -0.44 (-0.98, 0.09) - -

Connectivity (117.47 number of 

intersections/km2)

-3.01 (-6.80, 0.78) -2.94 (-6.23, 0.35) -1.16 (-1.94, -0.37) - -

Accessibility (bus stops-300m) (17.8  bus stops/ 

km2)

6.79 (-1.09, 14.67) ns 0.72 (-0.82, 2.26) - -

a Reference category as indicated inside brackets for the categorical variables. For continuous variables, estimates are calculated per IQR increase in exposure, as 

indicated inside brackets; IQRs calculated on the first imputed dataset after back transforming the variables. Models adjusted for cohort, child age, child sex, maternal 

education, family affluence score and area level SES. Beta estimates for all exposure variables selected in 10% or more of DSA runs are shown in Tables S6-S10. 

DSA: Deletion/substitution/addition algorithm. NDVI: Normalized Difference Vegetation Index. ns: not selected in the DSA model. *This variable was selected by the 

DSA but not included in the final multi-exposure model for the stability of the model.



Figure 2. Association between the urban environment exposures and behavioural 
patterns in childhood in single-exposure ExWAS model. (A,C,E): Heatmap showing 



outcome loadings of first three components. Variance explained: PC1 – 26.2%, PC2 – 
19.7%, PC3 – 15.3%; (B,D,F): Volcano plots showing significance (p-value) against beta 
coefficient. Black dashed horizontal line at p-values of 0.05; red solid horizontal line at TEF of 
0.005. Beta estimates for all exposures are shown in Table A.11. Model adjusted for cohort, 
child age, child sex, maternal education, family affluence score and area level SES. Note: Beta 
coefficient for change in PCs score compared with reference category for the categorical 
variables. For continuous variables, beta estimates are calculated per interquartile range 
increase in exposure. Acc Lines: Accessibility (bus lines-300m); Acc Point: Accessibility (bus 
stops-300m); Dist Inv Near Road: Inverse distance to nearest road; H: Home; MVPA: Moderate-
to-vigorous physical activity; NDVI: Normalized Difference Vegetation Index (100m); S: School; 
TEF, threshold for effective number of test (i.e., p-value correction for multiple testing). 
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Table 4. Analysis of the association between home exposures, and principal component of health behaviours in childhood (N=1,581). Multi-exposure model, shown 
are all exposure variables selected in 10% or more of DSA runs.

More mvpa and physical activity outside 
school (PC1)

More screen time and less sleep 
duration (PC2)

More active transport and more sleep 
duration, and less other sedentary 

activities (PC3)

Homea DSA (%) Estimate (95% CI) p-Value DSA (%) Estimate (95% CI) p-Value DSA (%) Estimate (95% CI) p-Value

NDVI-100m (0.31) 84 0.17 (-0.02, 0.36) 0.08 18 -0.15 (-0.33, 0.03) 0.11 86 0.12 (-0.06, 0.29) 0.21

Green distance (213.25 m) 34 -0.06 (-0.17, 0.06) 0.31 ns 86 -0.15 (-0.26, -0.05) 0.01

Green spaces Yes (vs. No) ns 10 -0.07 (-0.21, 0.07) 0.31 86 -0.12 (-0.28, 0.04) 0.14

Blue spaces Yes (vs. No) ns ns 86 -0.08 (-0.25, 0.10) 0.40

Road traffic load-100m (1,974,930 
vehicles/day m)

ns ns ns

Major roads-100m (vs. no major 
road)

ns 18 0.00 (-0.12, 0.11) 0.96 82 0.02 (-0.09, 0.13) 0.68

Traffic density on nearest road 
(11,033.1 vehicles/day)

68 -0.06 (-0.16, 0.03) 0.18 ns 86 0.05 (-0.04, 0.14) 0.30

Inverse distance to nearest road 
(0.04 m-1)

72 -0.06 (-0.13, 0.02) 0.13 ns 82 -0.03 (-0.10, 0.04) 0.37

Population density (7,550.89 
people/km2)

80 -0.08 (-0.16, 0.00) 0.05 56 0.07 (-0.01, 0.15) 0.07 86 0.05 (-0.02, 0.13) 0.16

Building density-300m ( 174,887.9 
m2 built/km2)

84 0.16 (0.05, 0.28) 0.01 12 -0.09 (-0.20, 0.02) 0.12 84 0.04 (-0.07, 0.15) 0.51

Connectivity (142.38 number of 
intersections/km2)

84 -0.12 (-0.23, -0.01) 0.04 ns 86 0.08 (-0.03, 0.19) 0.14

Accessibility (bus lines-300m)  1 or 
more (vs. none)

82 -0.13 (-0.28, 0.02) 0.08 ns 78 -0.02 (-0.16, 0.12) 0.76
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Accessibility (bus stops-300m) (17.8 
bus stops/ km2)

58 0.02 (-0.01, 0.05) 0.29 ns 86 0.03 (0.00, 0.06) 0.09

Facility richness-300m (0.10) ns ns ns

Facility density 300m (38.90 
facilities/km2)

22 0.05 (-0.08, 0.18) 0.48 ns 84 0.15 (0.03, 0.27) 0.02

Land use (0.19) ns ns 86 -0.05 (-0.14, 0.04) 0.29

Walkability index (0.15) 80 0.07 (-0.05, 0.20) 0.26 ns 100 -0.14 (-0.28, 0.00) 0.05

a Reference category as indicated inside brackets for the categorical variables. For continuous variables, estimates are calculated per IQR increase in exposure, as indicated inside brackets.  
Models adjusted for cohort, child age, child sex, maternal education, family affluence score and area level SES.  DSA: Deletion/substitution/addition algorithm; exposures selected in 10% or more 
DSA runs.  MVPA: Moderate-to-vigorous physical activity. NDVI: Normalized Difference Vegetation Index.  ns: not selected in the DSA model.
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