107 research outputs found

    ADHD, Lead, and PCBs: Eubig et al. Respond

    Get PDF

    Cutaneous and renal glomerular vasculopathy as a cause of acute kidney injury in dogs in the UK

    Get PDF
    To describe the signalment, clinicopathological findings and outcome in dogs presenting with acute kidney injury (AKI) and skin lesions between November 2012 and March 2014, in whom cutaneous and renal glomerular vasculopathy (CRGV) was suspected and renal thrombotic microangiopathy (TMA) was histopathologically confirmed. The medical records of dogs with skin lesions and AKI, with histopathologically confirmed renal TMA, were retrospectively reviewed. Thirty dogs from across the UK were identified with clinicopathological findings compatible with CRGV. These findings included the following: skin lesions, predominantly affecting the distal extremities; AKI; and variably, anaemia, thrombocytopaenia and hyperbilirubinaemia. Known causes of AKI were excluded. The major renal histopathogical finding was TMA. All thirty dogs died or were euthanised. Shiga toxin was not identified in the kidneys of affected dogs. Escherichia coli genes encoding shiga toxin were not identified in faeces from affected dogs. CRGV has previously been reported in greyhounds in the USA, a greyhound in the UK, without renal involvement, and a Great Dane in Germany. This is the first report of a series of non-greyhound dogs with CRGV and AKI in the UK. CRGV is a disease of unknown aetiology carrying a poor prognosis when azotaemia develops

    Trait determinants of impulsive behavior: a comprehensive analysis of 188 rats

    Get PDF
    Impulsivity is a naturally occurring behavior that, when accentuated, can be found in a variety of neuropsychiatric disorders. The expression of trait impulsivity has been shown to change with a variety of factors, such as age and sex, but the existing literature does not reflect widespread consensus regarding the influence of modulating effects. We designed the present study to investigate, in a cohort of significant size (188 rats), the impact of four specific parameters, namely sex, age, strain and phase of estrous cycle, using the variable delay-to-signal (VDS) task. This cohort included (i) control animals from previous experiments; (ii) animals specifically raised for this study; and (iii) animals previously used for breeding purposes. Aging was associated with a general decrease in action impulsivity and an increase in delay tolerance. Females generally performed more impulsive actions than males but no differences were observed regarding delay intolerance. In terms of estrous cycle, no differences in impulsive behavior were observed and regarding strain, Wistar Han animals were, in general, more impulsive than Sprague-Dawley. In addition to further confirming, in a substantial study cohort, the decrease in impulsivity with age, we have demonstrated that both the strain and sex influences modulate different aspects of impulsive behavior manifestations.FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE) and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement as well as national funds, through the Foundation for Science and Technology (FCT) [projects POCI-01–0145-FEDER-007038, NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023 and PTDC/NEU-SCC/5301/2014]. Researchers were supported by FCT [grant numbers SFRH/BD/52291/2013 to ME and PD/BD/114117/2015 to MRG via Inter-University Doctoral Programme in Ageing and Chronic Disease, PhDOC; PDE/BDE/113601/2015 to PSM via PhD Program in Health Sciences (Applied) and Phd-iHES; SFRH/BD/109111/2015 to AMC; SFRH/BD/51061/2010 to MMC; SFRH/SINTD/60126/2009 to AM; SFRH/BD/98675/2013 to BC; IF/00883/2013 to AJR; IF/00111/2013 to AJS; SFRH/BPD/80118/2011 to HLA]info:eu-repo/semantics/publishedVersio

    Overview of the Role of Environmental Factors in Neurodevelopmental Disorders

    Get PDF
    Evidence implicates environmental factors in the pathogenesis of diverse complex neurodevelopmental disorders. However, the identity of specific environmental chemicals that confer risk for these disorders, and the mechanisms by which environmental chemicals interact with genetic susceptibilities to influence adverse neurodevelopmental outcomes remain significant gaps in our understanding of the etiology of most neurodevelopmental disorders. It is likely that many environmental chemicals contribute to the etiology of neurodevelopmental disorders but their influence depends on the genetic substrate of the individual. Research into the pathophysiology and genetics of neurodevelopmental disorders may inform the identification of environmental susceptibility factors that promote adverse outcomes in brain development. Conversely, understanding how low-level chemical exposures influence molecular, cellular, and behavioral outcomes relevant to neurodevelopmental disorders will provide insight regarding gene-environment interactions and possibly yield novel intervention strategies

    Some food toxic for pets

    Get PDF
    According to world statistics, dogs and cats are the species that owners most frequently seek assistance with potential poisonings, accounting 95–98% of all reported animal cases. Exposures occur more commonly in the summer and in December that is associated with the holiday season. The majority (>90%) of animal poisonings are accidental and acute in nature and occur near or at the animal owner's home. Feeding human foodstuff to pets may also prove dangerous for their health

    Supplemental Information 1: Supplemental material.

    Get PDF
    The mechanistic target of rapamycin (mTOR) and ryanodine receptor (RyR) signaling pathways regulate fundamental processes of neurodevelopment, and genetic mutations within these pathways have been linked to neurodevelopmental disorders. While previous studies have established that these signaling molecules are expressed in developing zebrafish, a detailed characterization of the ontogenetic profile of these signaling molecules is lacking. Thus, we evaluated the spatiotemporal expression of key transcripts in mTOR and RyR signaling pathways in wildtype zebrafish at 24, 72 and 120 hours post fertilization (hpf). We further determined whether transcriptional profiles of a subset of genes in both pathways were altered by exposure to PCB 95 (2,2′,3,5′,6-pentachlorobiphenyl), a pervasive environmental contaminant known to cause developmental neurotoxicity in mammalian systems via RyR-dependent mechanisms. Quantitative PCR revealed that transcription generally increased across development. Genes in the signaling pathway upstream of the mTORC1 complex, and the RyR-paralogs, ryr2a and ryr3, were robustly upregulated, and in situ hybridization of ryr3 coincided with a transcriptional shift from muscle to neuronal tissue after 24 hpf. Static waterborne exposure to PCB 95 beginning at 6 hpf significantly altered transcription of genes in both pathways. These changes were concentration- and time-dependent, and included downregulation of rptor, a member of the mTORC1 complex, at both 72 and 120 hpf, and increased transcript levels of the RyR paralog ryr2b and downstream target of RyR signaling, Wingless-type 2ba (wnt2ba) at 72 hpf. The detailed transcriptomic profiling of key genes within these two signaling pathways provides a baseline for identifying other environmental factors that modify normal spatiotemporal expression patterns of mTOR and RyR signaling pathways in the developing zebrafish, as illustrated here for PCB 95
    • …
    corecore