43 research outputs found

    A cognitive neuroscience examination of embodied cognition

    Get PDF
    Embodied cognition theorists suggest that cognition is bodily based and that the brain developed due to interaction with the environment, and thus evolved to facilitate sensorimotor processing. As such, one goal of embodied cognition research is to determine how the interaction between the body and the environment affects the storage and processing of semantic information. Recent neuroimaging research has shown that the sensorimotor and premotor cortices are activated somatotopically when responding to action-related stimuli. In addition, behavioural research has provided evidence in support of the theory of embodied cognition, in that the sensorimotor properties of a stimulus have been shown to affect performance on language tasks. The goal of the current research was to provide a novel and comprehensive examination of the theory of embodied cognition through the combination of multiple experimental paradigms. Several functional magnetic resonance imaging and behavioural experiments on healthy participants were carried out, as well as a behavioural study of two individuals who have undergone either a left or right hemispherectomy. The results from the functional neuroimaging experiments demonstrated that there are common regions of activation between motor movements and semantic processing, whereby sensorimotor and premotor regions that are responsible for arm and leg motor movements are also recruited when responding to arm- and leg-related action semantic knowledge. Thus these results are consistent with the theory of embodied cognition, suggesting that the motor system is involved in the processing of action-related semantic information. The behavioural results were also consistent with previous research showing that pictures have privileged access to action-related semantic knowledge. Additionally, the behavioural results with hemispherectomy patients provided evidence regarding the necessity versus sufficiency of the left and right hemispheres when responding to arm- and leg-related semantic knowledge. Finally, given that words rated as higher in body-object interaction were responded to faster than words rated as lower in body-object interaction, these results show evidence that language processing is grounded in bodily interaction and sensorimotor processing. Together, the results further advance the theory of embodied cognition, and moreover, provide an in-depth analysis of how arm- and leg-related stimuli are processed dependent upon presentation format

    A neuroanatomical examination of embodied cognition: semantic generation to action-related stimuli

    Get PDF
    The theory of embodied cognition postulates that the brain represents semantic knowledge as a function of the interaction between the body and the environment. The goal of our research was to provide a neuroanatomical examination of embodied cognition using action-related pictures and words. We used functional magnetic resonance imaging (fMRI) to examine whether there were shared and/or unique regions of activation between an ecologically valid semantic generation task and a motor task in the parietal-frontocentral network (PFN), as a function of stimulus format (pictures versus words) for two stimulus types (hand and foot). Unlike other methods for neuroimaging analyses involving subtractive logic or conjoint analyses, this method first isolates shared and unique regions of activation within-participants before generating an averaged map. The results demonstrated shared activation between the semantic generation and motor tasks, which was organized somatotopically in the PFN, as well as unique activation for the semantic generation tasks in proximity to the hand or foot motor cortex. We also found unique and shared regions of activation in the PFN as a function of stimulus format (pictures versus words). These results further elucidate embodied cognition in that they show that brain regions activated during actual motor movements were also activated when an individual verbally generates action-related semantic information. Disembodied cognition theories and limitations are also discussed

    Individual Baseline Balance Assessments in a Large Sample of Incoming NCAA Division I Athletes Using a Force Plate System

    Get PDF
    # BACKGROUND Individualized baseline testing is resource and time intensive. The use of normative data to approximate changes after a suspected concussion is thus an appealing alternative. Yet, few peer-reviewed, large-sample studies are available from which to develop accurate normative averages of balance using force-plate technology. # PURPOSE This study sought to validate a normative dataset from the force-plate manufacturer and examine the magnitude and nature of sample variability. # STUDY DESIGN Cross-sectional. # METHODS Baseline balance and self-reported sex, sport, and concussion history were assessed in 533 prospective collegiate athletes (45% female) during pre-participation physical examinations. Balance was measured using four stances from the modified Clinical Test of Sensory Interaction and Balance and quantified as Sway Index Scores with the Biodex Biosway Portable Balance System. Group averages are contrasted to data from the force-plate manufacturer. Individual variability around these averages was visualized and analyzed by sex and sport. # RESULTS Male student athletes showed significantly more sway in the eyes open, soft stance condition than female athletes. These differences were maintained when concussion history was included as a covariate. Athletes, particularly male athletes, in the high versus low contact sport group showed significantly more sway in the eyes open, soft surface and the eyes closed, hard and soft surface stances. # CONCLUSION There was substantial individual variability that was partially explained by sex differences and sport differences. The development of normative averages for sway may benefit from consideration of sex and sport. Further studies should characterize other factors that influence baseline balance in collegiate athletes. # LEVEL OF EVIDENCE 2

    Intimate partner violence, substance use, and health comorbidities among women: A narrative review

    Get PDF
    Exposure to intimate partner violence (IPV), including physical, sexual, and psychological violence, aggression, and/or stalking, impacts overall health and can have lasting mental and physical health consequences. Substance misuse is common among individuals exposed to IPV, and IPV-exposed women (IPV-EW) are at-risk for transitioning from substance misuse to substance use disorder (SUD) and demonstrate greater SUD symptom severity; this too can have lasting mental and physical health consequences. Moreover, brain injury is highly prevalent in IPV-EW and is also associated with risk of substance misuse and SUD. Substance misuse, mental health diagnoses, and brain injury, which are highly comorbid, can increase risk of revictimization. Determining the interaction between these factors on the health outcomes and quality of life of IPV-EW remains a critical need. This narrative review uses a multidisciplinary perspective to foster further discussion and research in this area by examining how substance use patterns can cloud identification of and treatment for brain injury and IPV. We draw on past research and the knowledge of our multidisciplinary team of researchers to provide recommendations to facilitate access to resources and treatment strategies and highlight intervention strategies capable of addressing the varied and complex needs of IPV-EW

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    A global collaboration to study intimate partner violence-related head trauma: The ENIGMA consortium IPV working group

    Get PDF
    Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health

    The ENIGMA sports injury working group - an international collaboration to further our understanding of sport-related brain injury

    Get PDF
    Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
    corecore