124 research outputs found

    Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    Get PDF
    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches

    A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability

    Get PDF
    In recent years, an increasing number of diverse Engineered Nano-Materials (ENMs), such as nanoparticles and nanotubes, have been included in many technological applications and consumer products. The desirable and unique properties of ENMs are accompanied by potential hazards whose impacts are difficult to predict either qualitatively or in a quantitative and predictive manner. Alongside established methods for experimental and computational characterisation, physics-based modelling tools like molecular dynamics are increasingly considered in Safe and Sustainability-by-design (SSbD) strategies that put user health and environmental impact at the centre of the design and development of new products. Hence, the further development of such tools can support safe and sustainable innovation and its regulation. This paper stems from a community effort and presents the outcome of a four-year-long discussion on the benefits, capabilities and limitations of adopting physics-based modelling for computing suitable features of nanomaterials that can be used for toxicity assessment of nanomaterials in combination with data-based models and experimental assessment of toxicity endpoints. We review modern multiscale physics-based models that generate advanced system-dependent (intrinsic) or timeand environment-dependent (extrinsic) descriptors/features of ENMs (primarily, but not limited to nanoparticles, NPs), with the former being related to the bare NPs and the latter to their dynamic fingerprinting upon entering biological media. The focus is on (i) effectively representing all nanoparticle attributes for multicomponent nanomaterials, (ii) generation and inclusion of intrinsic nanoform properties, (iii) inclusion of selected extrinsic properties, (iv) the necessity of considering distributions of structural advanced features rather than only averages. This review enables us to identify and highlight a number of key challenges associated with ENMs’ data generation, curation, representation and use within machine learning or other advanced data-driven models to ultimately enhance toxicity assessment. Finally, the set up of dedicated databases as well as the development of grouping and read-across strategies based on the mode of action of ENMs using omics methods are identified as emerging methodologies for safety assessment and reduction of animal testing

    The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2

    Full text link
    Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence. © 2024, The Author(s)

    Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes

    Get PDF
    Deletions of chromosome 8p are a recurrent event in B-cell non-Hodgkin lymphoma (B-NHL), suggesting the presence of a tumor suppressor gene. We have characterized these deletions using comparative genomic hybridization to microarrays, fluorescence in situ hybridization (FISH) mapping, DNA sequencing, and functional studies. A minimal deleted region (MDR) of 600 kb was defined in chromosome 8p21.3, with one mantle cell lymphoma cell line (Z138) exhibiting monoallelic deletion of 650 kb. The MDR extended from bacterial artificial chromosome (BAC) clones RP11-382J24 and RP11-109B10 and included the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene loci. Sequence analysis of the individual expressed genes within the MDR and DNA sequencing of the entire MDR in Z138 did not reveal any mutation. Gene expression analysis and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) showed down-regulation of TRAIL-R1 and TRAIL-R2 receptor genes as a consistent event in B-NHL with 8p21.3 loss. Epigenetic inactivation was excluded via promoter methylation analysis. In vitro studies showed that TRAIL-induced apoptosis was dependent on TRAIL-R1 and/or -R2 dosage in most tumors. Resistance to apoptosis of cell lines with 8p21.3 deletion was reversed by restoration of TRAIL-R1 or TRAIL-R2 expression by gene transfection. Our data suggest that TRAIL-R1 and TRAIL-R2 act as dosage-dependent tumor suppressor genes whose monoallelic deletion can impair TRAIL-induced apoptosis in B-cell lymphoma

    Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas

    Get PDF
    Integrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them were frequently silenced by epigenetic mechanisms. Notably, the pattern of genetic and epigenetic inactivation differed among B-NHL subtypes. Thus, the P53-inducible PIG7/LITAF was silenced by homozygous deletion in primary mediastinal B-cell lymphoma and by promoter hypermethylation in germinal center lymphoma, the proapoptotic BIM gene presented homozygous deletion in mantle cell lymphoma and promoter hypermethylation in Burkitt lymphoma, the proapoptotic BH3-only NOXA was mutated and preferentially silenced in diffuse large B-cell lymphoma, and INK4c/P18 was silenced by biallelic mutation in mantle-cell lymphoma. Our microarray strategy has identified novel candidate tumor suppressor genes inactivated by genetic and epigenetic mechanisms that substantially vary among the B-NHL subtypes

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos

    A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability

    Get PDF
    In recent years, an increasing number of diverse Engineered Nano-Materials (ENMs), such as nanoparticles and nanotubes, have been included in many technological applications and consumer products. The desirable and unique properties of ENMs are accompanied by potential hazards whose impacts are difficult to predict either qualitatively or in a quantitative and predictive manner. Alongside established methods for experimental and computational characterisation, physics-based modelling tools like molecular dynamics are increasingly considered in Safe and Sustainability-by-design (SSbD) strategies that put user health and environmental impact at the centre of the design and development of new products. Hence, the further development of such tools can support safe and sustainable innovation and its regulation.This paper stems from a community effort and presents the outcome of a four-year-long discussion on the benefits, capabilities and limitations of adopting physics-based modelling for computing suitable features of nanomaterials that can be used for toxicity assessment of nanomaterials in combination with data-based models and experimental assessment of toxicity endpoints. We reviewmodern multiscale physics-based models that generate advanced system-dependent (intrinsic) or time -and environment-dependent (extrinsic) descriptors/features of ENMs (primarily, but not limited to nanoparticles, NPs), with the former being related to the bare NPs and the latter to their dynamic fingerprinting upon entering biological media. The focus is on (i) effectively representing all nanoparticle attributes for multicomponent nanomaterials, (ii) generation and inclusion of intrinsic nanoform properties, (iii) inclusion of selected extrinsic properties, (iv) the necessity of considering distributions of structural advanced features rather than only averages. This review enables us to identify and highlight a number of key challenges associated with ENMs' data generation, curation, representation and use within machine learning or other advanced data-driven models to ultimately enhance toxicity assessment. Finally, the set up of dedicated databases as well as the development of grouping and read-across strategies based on the mode of action of ENMs using omics methods are identified as emerging methodologies for safety assessment and reduction of animal testing.Horizon 2020(H2020)814426Solid state NMR/Biophysical Organic ChemistrySupramolecular & Biomaterials Chemistr

    Overexpression of Dyrk1A Is Implicated in Several Cognitive, Electrophysiological and Neuromorphological Alterations Found in a Mouse Model of Down Syndrome

    Get PDF
    Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities

    Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome

    Get PDF
    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities

    Exon-Level Transcriptome Profiling in Murine Breast Cancer Reveals Splicing Changes Specific to Tumors with Different Metastatic Abilities

    Get PDF
    In breast cancer patients, tumor metastases at distant sites are the main cause of death. However, the molecular mechanisms of metastasis of breast cancer remain unclear. It is thought that changes occurring at the level of RNA processing contribute to cancer. Alternative splicing (AS) of pre-mRNA, a key post-transcriptional mechanism allowing for the production of distinct proteins from a single gene, affects over 90% of human genes. Such splicing events are responsible for generating mRNAs that encode protein isoforms that can have very different biological properties and functions. A well-studied example is the BCL-X gene, whose two major transcript isoforms produce two proteins having antagonistic functions: the short form (BCL-XS) promotes apoptosis while the long form (BCL-XL) is anti-apoptotic. Moreover, overexpression of BCL-XL has been reported to enhance the metastatic potential of breast tumor cells in patients
    corecore