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In recent years, an increasing number of diverse Engineered Nano-Materials (ENMs), such as
nanoparticles and nanotubes, have been included in many technological applications and consumer
products. The desirable and unique properties of ENMs are accompanied by potential hazards whose
impacts are difficult to predict either qualitatively or in a quantitative and predictive manner.
Alongside established methods for experimental and computational characterisation, physics-based
modelling tools like molecular dynamics are increasingly considered in Safe and Sustainability-by-
design (SSbD) strategies that put user health and environmental impact at the centre of the design and
development of new products. Hence, the further development of such tools can support safe and
sustainable innovation and its regulation.
This paper stems from a community effort and presents the outcome of a four-year-long discussion

on the benefits, capabilities and limitations of adopting physics-based modelling for computing
suitable features of nanomaterials that can be used for toxicity assessment of nanomaterials in
combination with data-based models and experimental assessment of toxicity endpoints. We review
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Nomenclature

AIMD ab initioMolecular Dynamics
AO(P) Adverse Outcome (Pathway)
API Application Programming Interface
BD Brownian Dynamics
CG(MD) Coarse-Grained (Molecular Dynamics)
CSS Chemicals Strategy for Sustainability
DFT Density Functional Theory
DFTB Density Functional Tight-Binding
DLVO Derjaguin-Landau-Verwey-Overbeek
ENM Engineered NanoMaterials
FAIR Findable, Accessible, Interoperable and Reusable
GA Genetic Algorithm
GAN Generative Adversarial Network
HOMO Highest Occupied Molecular Orbital
hPF hybrid Particle-Field
KE Key Events
LCA Life Cycle Assessment
LDM Liquid Drop Model
LUMO Lowest Unoccupied Molecular Orbital

MD Molecular Dynamics
MDReaxFF Reactive Force Field Molecular Dynamics
MIE Molecular Initiating Events
ML Machine Learning
MoA Mode of Action
MODA MOdelling DAta fiche
NAM New Approach Methodologies
PMF Potential of Mean Force
QM Quantum Mechanics
QNAR Quantitative Nanostructure–Activity Relationship
QSAR Quantitative Structure–Activity Relationship
QSPR Quantitative Structure–Property Relationship
RNN Recurrent Neural Network
S(S) bD Safe (and Sustainable) by Design
SASA Solvent Accessible Surface Area
SCFT Self-Consistent Field Theory
VAE Variational Autoencoder
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modern multiscale physics-based models that generate advanced system-dependent (intrinsic) or time-
and environment-dependent (extrinsic) descriptors/features of ENMs (primarily, but not limited to
nanoparticles, NPs), with the former being related to the bare NPs and the latter to their dynamic
fingerprinting upon entering biological media. The focus is on (i) effectively representing all
nanoparticle attributes for multicomponent nanomaterials, (ii) generation and inclusion of intrinsic
nanoform properties, (iii) inclusion of selected extrinsic properties, (iv) the necessity of considering
distributions of structural advanced features rather than only averages. This review enables us to
identify and highlight a number of key challenges associated with ENMs’ data generation, curation,
representation and use within machine learning or other advanced data-driven models to ultimately
enhance toxicity assessment. Finally, the set up of dedicated databases as well as the development of
grouping and read-across strategies based on the mode of action of ENMs using omics methods are
identified as emerging methodologies for safety assessment and reduction of animal testing.

Keywords: Nanoinformatics; Nanosafety; Engineered nanomaterials; Physicochemical descriptors; Materials modeling;
Machine learning; Grouping approaches; Multiscale modeling; Safe and Sustainability-by-design(SSbD)
Introduction
ENMs perform key dedicated tasks in catalysis [1], medicine [2,3],
agriculture [4], food [5] and energy [6,7] among many others,
because of their exceptional and often unique characteristics.
ENMs underpin new products and devices requiring control of
matter at the nanometer scale, and the possibility to fine-tune
their synthesis protocols results in countless variants with differ-
ent physicochemical properties. The exceptional properties of
ENMs - stemming from the manipulation of matter at the atomic
scale - can also come with yet little-known risks to human health
and the environment. In fact, the biological activity of ENMs is
thought to be closely related to their physicochemical character-
istics, which may be altered by the biological medium itself dur-
ing the lifetime of ENMs (e.g., protein corona formation and
structural modifications). Both the intrinsic and extrinsic physic-
ochemical features of ENMs are key for recognizing and predict-
ing hazards as well as assessing safety characteristics. The former
are related to chemical composition, crystal structure, size, shape
2
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and surface structure, whereas the latter pertain to the non-trivial
interaction with the environment. As such, a complete set of
those features (here referred to as advanced descriptors) are critical
in nanoinformatics for data-based model development, such as
the popular quantitative nanostructure–activity/property models
(QSAR/QSPR). In this respect, predictive models offer unprece-
dented opportunities for knowledge-based optimization and
development of new ENMs improving their functionality and -
at the same time - minimizing unexpected health and/or envi-
ronmental risks. Preliminary in silico screening of possible ver-
sions of new ENMs can thus lead to optimal nanostructures
with reduced hazardous characteristics even before the produc-
tion stage. However, the pace of further progress in nanotechnol-
ogy will critically depend on a synergistic knowledge integration
of experimental evidence with data from reliable theoretical and
computational models.

The combined study of materials modeling (nanostructure
characterization) and predictive models for the design of safe
rg/10.1016/j.mattod.2023.05.029
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nanostructures with desired properties (Safe and Sustainability-
by-design perspective, SSbD) brings along new opportunities
both in the academic and industrial context. Nonetheless, signif-
icant challenges arising from both the extremely demanding
computational models (physics-based and data-based) and the
practically unlimited number of possible combinations of differ-
ent substances and nanoforms that lie ahead. Even for a single
material, there is a plethora of possible bulk and surface struc-
tures, defects and terminations, each delivering unique proper-
ties. This general challenge can only be tackled by an
integrated approach. Here, we critically analyze the process asso-
ciated with the in silico evaluation of the ENMs descriptors, with
the aim of highlighting challenges and opportunities when using
physics-based modelling for generating them.

Our discussion takes place under the broad perspective of the
European and US legislation development and their emerging
strategies related to risk assessment of nanomaterials (e.g., the
EU Materials Modelling Council, the EU REACH regulation, US-
EU nanoEHS initiative, the EU-US Nanoinformatics Roadmap
2030[8]). Despite the well-accepted relationship between physic-
ochemical properties (i.e. descriptors) and the (eco)-toxicological
endpoints, a comprehensive computational description of ENMs
FIG. 1

TOP: Physics-based models ensure high fidelity at a high computational cost, m
space. Hence, the necessary variance is needed to describe the large variety
advanced descriptors for nanosafety has to stem from different sources, such a
fidelity level. BOTTOM: Discrepancy in fidelity and variance is to be properly or

Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
and an understanding of the basic mechanisms behind their
interaction with biological media are still very challenging.

First, we focus on some of the (physics-based) computational
approaches for estimating advanced descriptors at time and
space scales relevant to nanosafety. In this respect, we provide
an overview of the approaches for investigating ENMs electronic
and atomistic structure (thus focusing on intrinsic features) up to
the mesoscopic description of interactions with biological mat-
ter, such as proteins or cell membranes, hence moving towards
more extrinsic features.

Second, more recent data-based models and approaches for
nanosafety assessment are analyzed. As illustrated schematically
in the top part of Fig. 1, computations can be performed at differ-
ent space/time scales by solving appropriate physical model
equations with advanced descriptors collected from each simula-
tor. Advanced descriptors can be passed across different time and
space scales, realizing a chain of multiscale simulations [9]. This
vision is certainly fascinating, however, as discussed below, it
comes with formidable challenges: as opposed to the high-
accuracy data extracted by the physics-based models, the inher-
ent computational cost is often prohibitively high. This leads
to a low data variance that renders the subsequent translation
aking it possible to investigate only a restricted region of the ENM design
of parameters of interest (e.g., particle size, coating, etc.). Thus, predicting
s literature data and crude approximation models characterized by a lower
chestrated, possibly using ML models [11].

3
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of such data into input for QSAR/QSPR (or other data-based)
models extremely difficult if not impossible. Details on obstacles
at every relevant scale are discussed, and the current status and
challenges with the European regulatory context on materials
modeling and in silico estimate of descriptors for nanosafety pur-
poses are reported below [10].
R
ES

EA
R
C
H

Safe and Sustainability-by-design (SSbD) strategy:
From nanoform description to safety modeling
Within the European Green Deal, the Chemicals Strategy for Sus-
tainability (CSS)[12] identified several actions to reduce negative
impacts on human health and the environment associated with
chemicals, materials, products, and services commercialized or
introduced onto the EU market. In particular, the ambition of
the CSS is to phase out the most harmful substances and substi-
tute, as far as possible, all other substances of concern and other-
wise minimize their use and track them. This objective requires
novel approaches to analyze and compare all life cycle stages,
effects, releases, and emissions for specific chemicals, materials,
products, and services, and moving towards zero pollution for
air, water, soil, and biota. The SSbD framework aims to support
the design and development of safe and sustainable chemicals
and materials with research and innovation (R&I) activities.

Although the safety of nanomaterials has been of concern to
the scientific community for more than two decades, there is still
a limited number of validated and regulatory-accepted alterna-
tive nano-specific approaches for assessing their human safety.
In fact, the current knowledge about various adverse effects
induced by nanomaterials after exposure does not yet enable a
broad development of the SSbD strategy.
The safety and sustainability assessment
Reliable and efficient methods allowing, in a timely manner, to
assess exposure risks should be first developed. In this context,
the development of new alternative methods combining
in vitro, chemical analysis as well as in silico models to predict
the potential adverse impact of chemicals, including nanomate-
rials, on human health is highly needed [13]. These tools are
expected to be useful for regulators and policymakers; therefore,
they need to consider biologically plausible and regulatory-
relevant events essential for the occurrence of possible adverse
outcomes [14]. In line with this point of view is the strategy that
integrates nanoinformatics models with the Adverse Outcome
Pathways (AOPs) [15,16]. The AOP is a framework that describes
a sequence of biological events following stressor exposure and
leading to various Adverse Outcomes (AO). This concept links
Molecular Initiating Events (MIE) to the series of key cellular-
or tissue-level changes (so-called Key Events, KE) that culminate
in the manifestation of AO. By supporting the identification of
AOP-relevant events and information that might be applied to
the weight of evidence-based safety decisions, AOP can serve as
a framework for developing nanoinformatics models useful for
regulatory actions. This would mean that events recognized as
crucial to manifest nano-specific adverse effects should be con-
sidered for modeling. As an example, recently, Jagiello et al.
[15] proposed a model that linked the structural properties of
multiwalled carbon nanotubes with the recruitment of pro-
4
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inflammatory mediators into the lungs, that finally leads to lung
fibrosis according to AOP173. Applying the AOP framework in
this model enables to understand events triggers following nan-
otube exposure and occurring in different biological organiza-
tions (molecular, cellular, tissue, organ, individual). To sum up,
with the development of the AOP-anchored nanoinoformatics
models (models for key biologically plausible and regulatory-
relevant events), the usage and acceptance of those approaches
in making regulatory decisions about the safety of nanomaterials
exposure can increase.

Additionally, the JRC (2022)[17] reviewed previous decision
frameworks for materials safety to investigate how sustainability
(broadly including social and economic aspects) was considered
and to define a set of criteria to integrate safety and sustainabil-
ity. Sustainability assessment can use conventional sustainability
metrics adapted for nanotechnology products and processes. In
this context, Stieberova et al. [18] used techno-economic and life
cycle environmental criteria for sustainability assessment, to
compare alternative nanoparticle production technologies;
García-Quintero and Palencia [19] analyzed conventional quan-
titative sustainability metrics and proposed Life Cycle Assess-
ment (LCA) as a suitable metric to compare, optimize and
quantify bio-based nanobiotechnology and nanosynthesis
protocols.

Regulatory actions to drive SSbD chemicals and materials
Predictive in silico modeling, accessible and searchable databases
and quantitative tools for risk assessment and prevention are crit-
ical for the successful implementation of SbD/SSbD strategies in
the nanosafety context and to develop relevant protocols, refer-
ence materials, realistic in vitro and computational models, as
well as grouping and read-across methods. [20] Additional chal-
lenges stem from the need to assess the fate and reactivity of next
generations of nanomaterials [21] including smart nanomaterials
and nano-enabled products [22]. New Approach Methodologies
(NAMs), comprise a wide range of such models and tools [23]
to conduct robust and reliable chemical safety assessments and
reduce animal testing.

With substantial funding, the European Commission has sup-
ported NAMs for nanomaterials, Refs. [24,25], acknowledging
their potential in regulatory decision-making and innovation.
NAMs could increase regulatory preparedness through fit-for-
purpose data and standardized tests specific to nanomaterials
[26], and their potential would be better exploited within tiered
regulatory schemes. [27] Consideration of available standards (as
the OECD standard for QSARs [28] and recommendations of the
European Materials Modelling Council for validating in silico
tools is essential to promote their adoption for regulatory use.
On the technical side, this also enables model integration into
complete computational IATA workflows [29].

As presented in Section ‘Data-based models for linking ENM
features to safety’, there is rich literature on a variety of models
for the prediction of ENMs properties and toxicity. The reverse
problem, i.e. the development of NM structures featuring desired
or optimal properties has also been considered in few recent
works. As a representative example, preliminary works consid-
ered a conditional deep convolutional Generative Adversarial
Network (GAN) using competitive learning to suggest nanopho-
rg/10.1016/j.mattod.2023.05.029
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tonic structures with desired optical properties [30], and a GAN
to generate crystalline porous materials, in particular pure silica
zeolite structures [31]. However, since there is still much to do
for understanding the behavior of ENMs, several projects have
been funded by the EU in the last years [32–35] to address safety
and risk governance issues.

With this in mind, researchers in NanoInformaTIX [36] pro-
ject have developed an optimization methodology to guide the
search for safer ENMs and to support the application of safe(r)-
by-design (SbD) approaches [37]. The assessment and screening
processes use efficient representations coupled with quantitative
tools for similarity assessment to investigate morphology-based
behavior [38]. The now implemented tool can be trained using
available datasets and can enable the assessment of various
design options generated during the optimal search.

Hazards of ENMs
As mentioned above, the physicochemical properties of nanoma-
terials may significantly differ from their bulk counterparts.
Despite the beneficial technological consequences associated
with this, ENMs might exhibit hazardous effects on human
health or the environment. The experience gathered from the
employment of asbestos fibers decades ago serves as a cautionary
tale for the potential hazard of nanomaterials. Asbestos were
extensively used in various products with a wide range of appli-
cations because of the advantageous properties, like heat resis-
tance/isolation and durability. However, after many years of
ubiquitous quotidian presence, the insidious harmful effects on
health became evident. In this regard, it was discovered that after
a long latency period asbestos were able to cause lung cancer and
mesothelioma [39]. This effect was linked with its high-aspect
ratio fiber structure and frustrated phagocytosis. Gathering mate-
rials by common features leading to similar adverse effects is a
first step to group and read-across. Therefore, investigating the
potential hazards of nanomaterials is crucial to guarantee their
safety enabling their responsible usage. Understanding their
potential hazard is important to engineer relevant modifications
and undertake the necessary measurements to minimize expo-
sure, while still profiting from their various beneficial properties.
Understanding their potential hazard requires describing surface
structure, properties and reactivity, which define how these engi-
neered nanomaterials interact with each other and with the envi-
ronment. The latter determines the trend to aggregate, which
affects fate and exposure; moreover it shapes their surface prop-
erties, thus altering interaction among particles (fate, exposure)
and modifying reactivity. Although there are several exposure
scenario for nanomaterial toxicity, inhalation is considered the
most critical uptake route since it allows the particles to reach
the sensitive tissues deep within the lungs [40]. There, the parti-
cles could be taken up by lung cells or interact with the immune
system, leading to harmful effects. Asbestos is not the only 1-
dimensional material potentially harmful. Other materials, with
very different chemistry and composition, share common fea-
tures. Studies on specific types of carbon nanotubes suggested
that they may show similar toxicity as asbestos fibers at lung
level [41,42]. Similarly, research on silver nanoparticles showed
genotoxicity and pointed out that smaller-sized particles exhib-
ited higher toxicity in in vitro settings [43]. It is important to
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
emphasize that not all nanomaterials are associated with risks
for human health. Their toxicological potential depends on dif-
ferent factors such as size, shape, functionalization, besides
chemical composition. Ultimately, toxic effect is a phenomenon
triggered at the surface of nanomaterials, and how it interacts
with its environment. Bulk properties do not typically correlate
with surface properties or structure; therefore, no direct transla-
tion of bulk characteristics can be made to surface reactivity.
Experimental characterization may be hampered by this, which
must be taken in consideration when defining characterization
strategies. From a more methodological perspective, material
characterization should include detailed information on the sur-
face and its defects, how the latter and the former depend on the
underlying bulk structure and defects and how those are affected
and, ultimately, shaped by the interaction with the environment
or biological media. The combination of these properties results
in countless possible nanomaterials that can enter the market,
which can rapidly overwhelm the current risk assessment
procedure.

For this reason, SSbD strategies are particularly important, as
they have the potential to facilitate and expedite risk assessment,
necessary to minimize the potential risks associated with the use
of nanomaterials throughout their lifecycle. Moreover, SSbD
strategies are crucial to ensure the responsible development of
nanomaterials and their applications.

The role of materials modeling in ENMs’ hazard assessment
It is worth stressing that accurate physics-based modelling of
materials is typically not meant to directly simulate the basic
mechanisms underpinning ENMs toxicity. On the contrary, such
tools and methods can be used to compute properties that can
better capture the complexity of ENMs composition and the
influence of external conditions on toxicity, as opposed to diffi-
cult, time-consuming and expensive experiments (when experi-
ments are possible). Despite the benefits of using materials
modelling to calculate nano-descriptors, even until a few years
ago, the scale and complexity of system simulations were chal-
lenging, and there was a shortage of models to predict important
properties, such as the NM dissolution rate [8].

One may thus conclude that it is highly desirable to base
nanosafety assessment upon accurate intrinsic and extrinsic
properties, i.e. features that represent a particular structure and
chemical nature of the ENMs of interest and how these proper-
ties affect or are affected by their (biological) environment. In
the following, such features or advanced descriptors and their eval-
uation by means of physics-based models is discussed in more
detail. Interpolation- or extrapolation-based methods like QSAR
and ML will be served by a deterministic calculation of such
advanced descriptors in a part of the parameter space that is
expensive or hard to assess experimentally, or when experimen-
tal data are unclear or incomplete. On the other hand, physics-
based models may also provide direct insight into the relation
between observed ensemble properties (phenomena) and system
parameters (simple and advanced descriptors) that stems from a
systematic computational screening for one or more well-defined
design parameters. Examples of phenomena considered in this
review are protein absorption, NP aggregation and membrane
binding. An instance of direct insight gained by computational
5
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means is the finding that small nanoparticles (�d, with d the
membrane thickness, usually 4–5 nm) can simply permeate
through the membrane, similar to small molecules, while large
nanoparticles (�d) will be fully engulfed or wrapped by the
membrane upon binding. The binding characteristics for
nanoparticle sizes comparable to the membrane thickness is still
unclear [44].

A separation of descriptors into intrinsic and extrinsic pro-
vides a straightforward basis for the selection of the most appro-
priate physics-based model. Section ‘Data-based models for
linking ENM features to safety’ discusses the current knowledge
on ENMs and the (additional, advanced) features that need to
be considered, as well as the progress on nanomaterial represen-
tations and data-based models, like nano-QSARs, that can receive
and process the calculated nano-descriptors.
Data-based models for linking ENM features to safety
The critical role of a general representation of ENMs
In the attempt of gaining a deep rationale from data linking ENMs
and their observed safety properties, an essential prerequisite is
the ability to represent complex materials in well structured and
machine-readable format. Unfortunately, to date, the lack of a
standardized semantic characterization of the structural ENMs
features and environmental variables makes it difficult to aggre-
gate, curate and evaluate data from different sources and to use
them for simulations or for training new (data-driven) models;
thus making the meaningful integration of datasets a very
demanding task. Web databases and repositories for chemical
substances (e.g., ChEMBL, PDBe, ZINC15, Pubmed etc.) use stan-
dardized linear notations for substance identification (SMILES,
SYBYL Line Notation, or InChI) [45,46]. These notations are also
employed in deep learning tools to guide the generation of feasi-
ble molecular structures with desirable properties (e.g., Genera-
tive Adversarial Networks (GANs), Variational Auto-Encoders
(VAEs), Recurrent Neural Networks (RNNs), etc.). The extension
of these notations to polymers, mixtures, reactions, etc. has also
been proposed, but ENMs entail additional challenges compared
to conventional chemicals. The key properties of ENMs have a
strong dependence on the physical and structural features. ENMs
characteristics such as the spatial relationship between compo-
nents, their relative sizes, etc., all play an important role in their
inherent and emergent properties. What is more, many of these
properties are environment-dependent, as they are affected by
various external factors such as temperature and concentration
through non-linear dependencies, making ENMs descriptions
even more subtle and complicated.

A complete ENM representation, therefore, would require the
inclusion of information on many more aspects than what cur-
rent linear notations provide. Extending the current representa-
tions to include such advanced information content is not a
straightforward task. Lynch et al. [47] have initiated an extensive
discussion among various stakeholders and proposed a frame-
work for an InChI standard applied to ENMs as well as a roadmap
for its development. They aimed to address the variety of com-
plex nanostructures, using a hierarchical approach that intro-
duces new layers on the InChI notation for the size, shape,
crystal structure, and ligand binding of the ENM, and, possibly,
6
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extrinsic and surface properties. Recently, Blekos et al. proposed
principles for a more accurate, complete, flexible and incremen-
tal representation approach. The principles were demonstrated
through the development of extensions to nano-InChI to encode
morphology/mixture properties and statistical distributions of
properties and to store metadata and enable their reuse.

The proposed representation framework could also provide
the theoretical background to gradually capture the real particle
dynamics under specific environmental conditions. [38] These
are currently under consideration in the Nanomaterials InChI
Working Group (https://www.inchi-trust.org/nanomaterials/)
and their proposal for a new InChI standard. A hope for the near
future is that an increasing number of advanced descriptors - as
those discussed below in Section ‘Physics-based models for
nanostructure characterization’ - will be gradually incorporated
into such standard notations.

Data-based models for safety assessment
In nanoinformatics, popular data-based models include Quanti-
tative Structure Activity Relationship modeling (so-called nano-
QSAR/-QSPR) that utilizes Machine Learning (ML) and artificial
intelligence to predict the desired response (e.g., biological activ-
ity, toxicity endpoints or any physicochemical property of inter-
est). Those approaches are based on a set of computational and/
or experimentally developed descriptors representing nanoparti-
cle structure. As a representative example, Wyrzykowska, Mikola-
jczyk, et al. [48] proposed a concept in which a nanostructure is
characterized by a triad that describes: (i) molecular structure; (ii)
molecular descriptors; (iii) molecular properties that correspond
to chemical composition and chemical structures of its compo-
nents. The proposed triad covers the characterization of the
intrinsic properties of nanoparticle structure (so-called system-
independent or intrinsic (nano-) descriptors (S-descriptors in
Fig. 2, left panel). [49].

Recent advancements in nano-QSAR modeling have intro-
duced hybrid models that enhance predictive capabilities by
integrating multiple modeling approaches. These hybrid models
often combine molecular dynamics simulations data with
machine learning techniques to better understand and predict
the complex behavior of nanomaterials in biological systems
and their interactions with the environment.[50,51] Although
QSAR/QSPR can be certainly regarded as valuable tools to com-
plement experimental studies on chemicals and nanomaterials,
they come with multiple challenges that should be carefully ana-
lyzed. In particular, there is an absence of comprehensive meth-
ods to characterize nanoparticles, which are essential for a
standard QSAR procedure or a dependable computational
approach that accurately represents the unique features of
nanostructures – in short, a lack of trustworthy nano-descriptors.

Furthermore, depending on the surrounding environment,
ENMs features may change; thus, the data-based models should
be developed based not only on the characterization of ENMs
chemical composition/chemical structures of its components
but also on the influence of the environment (including experi-
mental conditions, or biological medium). In other words, the
so-called system-dependent (extrinsic) nano-descriptors or the
environment (E-descriptors) should also be considered to
describe nanostructure as a whole (Fig. 2, right panel) [48,49].
rg/10.1016/j.mattod.2023.05.029
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FIG. 2

Intrinsic and extrinsic descriptors: Intrinsic descriptors (i.e. system-independent, sometimes also referred to as S-descriptors) refer to the composition,
components’ structures, and properties that may be measured or calculated under a well-defined, unchanging set of conditions. On the other hand, extrinsic
descriptors (i.e. system-dependent, sometimes also referred to as E-descriptors) represent the influence of the surrounding environment, and may be varying
in time. See text and Section ‘Physics-based models for nanostructure characterization’ for more details..
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In the following two subsections, we provide a brief critical
review of intrinsic and extrinsic descriptors in preparation to
the most recent and advanced computational approaches to esti-
mate them, as discussed in detail in Section ‘Physics-based mod-
els for nanostructure characterization’.
System-independent intrinsic features
System-independent (intrinsic) nano-descriptors refer to the com-
position, components’ structures and properties that may be mea-
sured or calculated under a well-defined, unchanging set of
conditions. A first example of advanced descriptors that were suc-
cessfully applied for data-based modeling of nanoparticles was
developed based on quantum mechanical calculations (so-called
QM Descriptors) [52]. The QM Descriptors that describe the core
chemistry of the structure were proposed in 2011 by Puzyn
et al. [52] QM descriptors reflect the electronic form of a chemical
compound. They are obtained by applying quantum mechanics
to the appropriate molecular model of an ENMs structure. During
the last 10 years, different research groups have been working to
develop more sophisticated types of descriptors that are not
related to detailed atomistic simulations. For example, in 2012,
Toropov et al. [53] proposed SMILES-based optimal descriptors
based on the encoded one-, two- and three-element SMILES attri-
butes of a compound and can be calculated with the CORAL soft-
ware [54]. This idea was then extended to the simplex
representation of molecular structure (SiRMS). Here, another type
of descriptor based on the Liquid Drop Model (LDM descriptors)
was proposed by Sizochenko et al. in 2014 [55]. The methodology
of LDM descriptors calculation assumes that an ENM can be rep-
resented as a spherical drop in which elementary molecules are
tightly packed. At the same time, the density of clusters is equal
to the particle mass density [56]. The proposed methodology is
based on the thermodynamically most stable unit cell of the con-
sidered crystal structure, that is replicated in three dimensions.
Afterwards, a spherical ENM is created by removing all atoms out-
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
side the indicated diameter. This is a clear simplification: In fact,
bulk-cut surfaces will restructure, and even a spherical particle
may exhibit regular regions as well as a variety of defects. [57].
Moreover, surfactants may reorder the surface differently [58].
Clearly, during the last decade, computational scientists and
nanoinformaticians active within the European safety commu-
nity have made a considerable effort to integrate knowledge from
existing EU completed and ongoing projects within EU FP7 and
HORIZON 2020 to develop a more comprehensive approach for
nanostructure characterization [59]. However, we should also rec-
ognize that several key challenges related to the appropriate rep-
resentation and description of ENMs structure are still ahead.
Among others, those aspects have been highlighted by results
provided by Mikolajczyk et al., Wyrzykowska, Mikolajczyk, et al.
[60,49]. As far as intrinsic properties of ENMs are concerned,
one of the main challenges is related to the description of the
complexity of nanomaterials composition, thus clearly requiring
the development and use of more advanced computational tools
capable to evaluate/estimate descriptors that are difficult or even
impossible to access by current experiments.

While such aspects are discussed in detail below within
Section ‘Physics-based models for nanostructure characteriza-
tion’, an additional critical point, partly related to the latter com-
putational assessment of intrinsic ENMs features, is related to the
lack of detailed material characterization in the published litera-
ture. Too often, indeed, only nominal composition, shape and
size of nanomaterial are reported, with their possible coating
only vaguely (if at all) defined. Clearly, those uncertainties add
even more complexity and make benchmarking of computa-
tional material modeling particularly difficult.
System-dependent extrinsic features
While using QSAR/QSPR or other data-based models, a second
challenge concerns representing the influence of external condi-
tions (surrounding environment) [48]. A recently published
7
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study [49] indicates that the system-dependent (extrinsic) nano-
descriptors, also referred to as environment descriptors (E-
descriptors), are much more critical for controlling and manag-
ing out the properties of ENMs than nanostructure characteris-
tics themselves. Thus, in addition to standard characterization,
the experimentalist should provide information about changes
in the structure of the nanoparticles depending on the environ-
ment (the surrounding conditions). As a result, next to the core
and coating, surface properties such as protein corona formation
(so-called “biomolecular corona”) play an essential role in char-
acterizing ENMs’ behavior and may be considered its fingerprint
in a biological medium, see also Section ‘Extrinsic advanced
descriptors: Mesoscopic level’ below for more details.

The system-dependent (extrinsic) nano-descriptors are crucial
in describing physicochemical properties such as electrophoretic
mobility or zeta potential value under specified conditions,
reflecting the hydrophobicity, biomolecular corona, dissolution
rate, sorption, surface reactivity, degree of aggregation/agglomer-
ation, or ENM persistence.

Developing the system-dependent (extrinsic) nano-
descriptors is challenging because the nanostructure may change
during its lifetime due to its transport through different environ-
ments. In fact, nano-bio interactions are in principle driven by
the nanomaterials fate in biological and environmental compart-
ments, meaning how materials translocate, act as carriers of fur-
ther toxicants and finally come in touch with biological targets.
Under this perspective, the surface charge and wettability are
considered the key determinants of the fate and behavior of
nanomaterials dispersed in the exposure media.

Furthermore, the electrostatic interactions that keep particles
dispersed, preventing or promoting contact with cell membranes,
depend on the surface potential shown at the slipping plane (Zeta
potential), as well as other important properties that drive nano-
bio reactivity such as hydrophilicity or the surface interaction
with biomolecules solubilized in the media. In this respect, the
identification of the pH at which the Zeta potential is equal to
zero (isoelectric point) allows making hypothesis on the type of
acid/base behavior of surfaces and on the presence of charged
molecules specifically adsorbed, as well as on the colloidal stabil-
ity of nano-dispersed phases and of the occurring of hetero-
aggregation phenomena [60–63]. In addition, the Zeta potential
is very useful for the design optimization of surface functionaliza-
tion strategies applied to control nanoparticles reactivity both for
nanosafety and nanomedicine purposes, because it is predictive of
the amount and type of coating that masks surface sites, provid-
ing a new biological identity to the dispersed phases [60,64].
Few studies report in silico models for the prediction of Zeta
potential based on physicochemical intrinsic properties [60,65].

One of the most promising approaches that could cope with
the challenge of extrinsic descriptors is an application of atomis-
tic simulations complemented with coarse-grained models of
ENM and biomolecules (see the dedicated sections below). In
such multiscale approach, the coarse-grained models (nano and
microscale) are parameterized and possibly validated by the data
obtained from more detailed models at smaller scales (atomistic
and quantum chemical). In this context, novel descriptors can
also be derived from the statistics of adsorbed molecules after
an analysis of the biomolecular corona [66,67].
8
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Modern machine-learning methods
Machine learning (ML) is a branch of artificial intelligence (AI)
that involves training computer programs to make predictions
or take actions based on data. In ML, algorithms are designed to
learn from data, instead of being explicitly programmed to per-
form specific tasks. The idea is to provide the computerwith a large
amount of data, and then use this data to teach the computer how
to identify patterns, make predictions, or classify new data. At its
core, ML includes four basic notions: algorithms, models, data,
and training. ML algorithms are designed to learn from data and
make predictions or take actions based on that data. The algo-
rithms generatemodels, which are representations of the patterns
and relationships in thedata. Thequality of themodel depends on
the quality and quantity of the data used to train it, as well as the
algorithm’s ability to learn from that data. Therefore, the process
of training an ML model involves feeding it with labeled data,
measuring its performance, and refining the model until it
achieves satisfactory accuracy on new, unseen data.

The rationale for using ML approaches for nanosafety assess-
ment is based on the need to efficiently process, analyze, and
extract meaningful information from possibly vast amounts of
data generated from both computational and experiments. ML
algorithms can learn complex relationships and patterns from
those data sets, enabling researchers to make predictions, opti-
mize material properties, and identify novel materials with
desired (e.g. less toxic) characteristics.

The advantages of using ML - as opposed to more traditional
approaches - include:

� Accelerated materials discovery and optimization: ML algo-
rithms can quickly process large amounts of data and identify
potential new material candidates or modifications for further
investigation.

� Reduced experimental and computational costs: By predicting
material properties and hidden pattern identification, ML can
help reduce the number of experiments and simulations
required in the development process.

� Enhanced understanding of complex material systems: ML
can capture non-linear relationships and intricate patterns
in data, leading to better insights into the underlying physics
and chemistry of materials.

However, there are also challenges and limitations associated
with such ML approaches:

� Data quality and availability: ML algorithms rely on high-quality
and abundant data, which can be a limiting factor in materials
science, where data may be scarce, noisy or heterogeneous.

� Interpretability and explainability: ML models can be com-
plex and difficult to interpret, making it challenging to under-
stand the underlying reasons for their predictions and build
trust in their outcomes.

� Overfitting and generalization: ML models may be prone to
overfitting, namely they perform well on the training data
but poorly on unseen data, thus reducing predicting accuracy.

ML techniques have been applied to a wide range of applica-
tions and fields including nanoinformatics [68]. In such a con-
rg/10.1016/j.mattod.2023.05.029
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text, ML methods have the potential to significantly impact the
design, characterization, and safety assessment of ENMs. How-
ever, the availability of high-quality and abundant data is still
an important aspect to address.

Among other challenges, a particularly important aspect asso-
ciated to data-based modelling in nanoinformatics is the proper
handling of highly imbalanced datasets. Imbalanced datasets
are characterized by a skewed class distribution (e.g., over 1:100
observations in the minority class compared to the majority
class), where usually the minority (underrepresented) class is
the most interesting one to predict. For example, in an unbal-
anced dataset, there could be a majority class of nanomaterials
that are composed of a single element (e.g. gold nanoparticles)
and minority classes of nanomaterials that are composed of mul-
tiple other elements. As a result, when training a ML to classify
the nanomaterials the model is likely to be biased towards the
majority class and may not perform well on the minority class
of high interest.

To address the issue of class imbalance, various data-level and
algorithm-level approaches have been proposed over the last dec-
ades [69–71]. Data level approaches are addressing class imbal-
ance via resampling (undersampling and oversampling), as well
as via evolutionary algorithms for sampling, active learning for
selecting the most appropriate data points or more recently
adversarial learning algorithms for new points generation and
meta-learning [72]. Random undersampling (i.e. removal of
observations from the majority class), Near Miss, Tomek links
(i.e. removal of boundary observations) are examples of under-
sampling (or downsampling) algorithms. The disadvantage of
the latter methods is the loss of useful information as well as pos-
sible increase of the data bias.

Oversampling approaches include random oversampling
(multiplication of observations from the minority class), SMOTE
(finding nearest neighbors of the minority class observations and
adding points on the line joining the point and the nearest
neighbor) [73]. A review of SMOTE variants can be found in
Ref. [74] SMOTE extensions to handle multiclass and multilabel
(MLSMOTE) classification and regression (SMOTER) have been
proposed [75], and, more recently, DeepSMOTE [76] and GraphS-
MOTE [77]. Oversampling has the advantage of retaining all the
information and usually performs better than undersampling.
However, oversampling may increase the probability of
overfitting.

Another important aspect to be considered is that accuracy is
not an appropriate metric for assessing model performance on
imbalanced datasets. Algorithm-level approaches aim at modify-
ing the loss metric, assigning different costs to penalize errors in
each class (cost-sensitive training) or introducing new algorithms
which can inherently deal with imbalanced data. Instead of accu-
racy, the recommended metrics are confusion matrix, precision
and recall, F1 score, Kappa, Area under curve (AUC) (see also
Ref. [74]). Ensemble algorithms using bagging and boosting
(e.g., tree ensembles as Random Forest) are known to be more
robust in imbalanced settings. Recent literature addresses han-
dling imbalanced data (also known as long tail learning) by deep
learning methods [78,79]. Imbalanced datasets are typical in
high throughput screening [80–82] and chemogenomics [83].
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
ML algorithms can be broadly categorized into supervised and
unsupervised learning. We begin with a discussion of supervised
learning in the following subsection.
Supervised learning
Supervised learning works on labelled data, with the goal of
approximating a function that maps input to labelled data. A
prototypical example would be the ability to link a set of relevant
intrinsic and extrinsic advanced descriptors for a number of
ENMs to their observed (eco-) toxicological endpoints, e.g. the
survival and/or reproduction rate of a chosen organisms. Super-
vised learning techniques include a large variety of algorithms
and methods like Decision Trees, Random Forest, Support Vector
Machines, various classifiers like k-Nearest Neighbors, Neural
Networks and Instance-Based Learning methods (see Fig. 3, left
panel) [84,85].

In one of the earliest applications of ML methods in manufac-
tured nanoparticles, Fourches et al. used Support Vector
Machine-based classification and kNN-based regression to gener-
ate Quantitative Nanostructure–Activity Relationship (QNAR)
models to predict biological activity profiles of novel nanomate-
rials [86]. Later, Puzyn et al. [52] presented a method to quickly
test the potential toxicity of engineered nanoparticles. They
applied a multiple regression method combined with a Genetic
Algorithm (GA-MLR) to create a model that described the cyto-
toxicity of 17 different types of metal oxide nanoparticles to bac-
teria Escherichia coli [52]. Gernand and Casman performed a
regression-tree-based meta-analysis on rodent pulmonary toxic-
ity exposed to uncoated, non-functionalized carbon nanotubes.
They reported the application of Regression Tree models, Ran-
dom Forest models, and a random-forest-based dose–response
model [87]. Winkler et al. used novel sparse ML methods to
model the biological effects of nanoparticles with various com-
positions, including iron oxide nanoparticles and gold nanopar-
ticles. They employed Bayesian neural networks using both
linear and nonlinear ML methods [88].

Evolutionary approaches have also been explored. Le and
Winkler [89], for example, reviewed the use of artificial evolu-
tionary methods for the identification and optimization of novel
materials. They report uses of genetic algorithms to investigate
the properties of bimetallic core–shell and titanium dioxide
nanoparticles [90,91]. Martinez et al. presented decision tree
models based on evolutionary algorithms that classified
nanoparticle aggregates into morphological classes [92]. kNN
algorithms have also been used to model the toxicological prop-
erties of nanomaterials. Wang et al. used a kNN algorithm to
develop QNAR models for biological activity profiles like cellular
uptake in various human cells and the ability to induce oxidative
stress [93]. Kovalishyn et al. used kNN, random forest, and neural
network methods to generate models for the analysis of eco/tox-
icological and physicochemical properties for metal and metal
oxide nanoparticles [94].

Various Neural Network architectures have also been investi-
gated in relation to predictive nanoinformatics. Gomez-
Bombarelli et al. trained a Deep Neural Network to automatically
generate novel chemical structures and demonstrated their
method on small drug-like molecules [95]. Hataminia et al. used
9
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FIG. 3

The use of Supervised and Unsupervised Machine ML in predictive nanoinformatics: Supervised ML methods (Decision Trees, Random Forest, Neural
Networks etc.) are often used to create or improve predictive models, while Unsupervised ML methods (Clustering, Self-Organizing Maps, etc.) are more often
used to group and explore nanomaterials properties or in combination with Supervised ML methods.
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a neural network to model the cytotoxicity of iron oxide
nanoparticles to kidney cells [96]. Lazerovits et al. trained a Deep
Neural Network to predict nanoparticle biological fate immedi-
ately after intravenous injection and tested it by predicting
nanoparticle spleen and liver accumulation [97]. Very recently,
Balraadjsing et al. investigated the performance of various super-
vised ML algorithms in the context of acute Daphnia Magna
nanotoxicity prediction. Here, the Authors created classification
models based on Random Forest, Neural Networks and kNN algo-
rithms [98].

Li et al. used multi-target Random Forest Regression to predict
the performance of sunscreen based on the type of titanium
dioxide nanoparticle additives. Based on those models, they
demonstrated the use of inverse design models that identify
nanoparticle configurations based on desired sunscreen proper-
ties [99].

While the literature provides numerous examples of super-
vised learning techniques applied to nanoinformatics, the choice
of an appropriate method is not always straightforward and often
depends on several factors. For example, the choice between clas-
sification and regression usually depends on the type of problem
being addressed: classification is used for categorical output vari-
ables, while regression is used for continuous output variables.
Various factors, such as data size, dimensionality, complexity,
and desired model interpretability, influence the choice of a
specific algorithm.

Some general guidelines that can be considered when select-
ing an algorithm include the following: Decision Trees and Ran-
dom Forest are well-suited for problems with mixed data types
(numerical and categorical), and they provide easily interpretable
results. Support Vector Machines (SVM) are appropriate for high-
dimensional data and complex decision boundaries; however,
they might be computationally intensive for large datasets. k-
Nearest Neighbors (kNN) is a simple, instance-based method that
performs well with small datasets but can be computationally
intensive and sensitive to noise for larger datasets. Lastly, Neural
10
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Networks are effective for modeling complex patterns and rela-
tionships in high-dimensional data, but they may require more
extensive computational resources and may not provide easily
interpretable results.
Unsupervised learning
Unsupervised learning mostly deals with unlabelled data. This is
particularly advantageous when data labelling is a resource-
intensive task. The goal of unsupervised learning is to learn or
discover the structure and patterns of the input data, and it is
often based on exploring similarity among the input variables.
In the case of nanomaterials, unsupervised learning is thus useful
to explore similarities-based advanced descriptors. Clustering
algorithms are the most representative algorithms of unsuper-
vised learning. Popular examples include k-means, Principal
Component Analysis, various Neural Networks like Self-
Organizing Maps and Hierarchical Clustering (see Fig. 3, right
panel) [100,85,85].

Unsupervised learning techniques have been used for the clas-
sification of nanomaterials or nanomaterial properties and qual-
ity assessment. They have also been used in combination with
supervised or other statistical methods to assist, for example,
the development of QSAR and neural network models. Wang
et al. used Principal Component Analysis to analyze the structure
toxicity relationship for various nanoparticles and identified the
physicochemical properties of the nanoparticles that are risk fac-
tors for cytotoxicity [101]. Jha et al. modeled the toxicity of
nanomaterials using a multivariate statistical analysis approach:
through a multivariate Principal Component Analysis, they
selected descriptors that optimally separated toxic from non-
toxic nanomaterials [102]. Sizochenko et al. used a Self-
Organizing Map in their hybrid approach to identify hidden pat-
terns of toxicity among nanoparticles and to determine the
underlying factors responsible for the toxicity [103]. Sizochenko
et al., to evaluate the genotoxicity of metal oxide nanoparticles,
developed another hybrid supervised and unsupervised ML
rg/10.1016/j.mattod.2023.05.029
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TABLE 1

Summary of the main challenges associated to data-based modelling in the ENMs safety context.

Identified challenge Recommendations for future research

Representation and description of intrinsic properties of ENMs is much
more complex and challenging as compared to chemicals

Effort should be devoted to include additional and more comprehensive
information layers to the nano-InChI notation following the ongoing work in
[46,38]. Additional intrinsic descriptors should be developed on the basis of
experimental data but also advanced material modeling tools, such as
quantum and atomistic simulations as discussed in Section ‘Physics-based
models for nanostructure characterization’ below. Attention should be paid
to the use of computational techniques as their robustness and the
energetic needs associated with massive calculations might be a constrain
in the next future.

Detrimental lack of well characterized ENMs data: go beyond nominal
data

An effort should be made to design experimental and theoretical
characterization including interfacial regions, key in the ENMs reactivity. In
particular, the accurate description of the electronic structure at the surface
is needed to capture specific interactions and mechanisms.

The influence of external conditions may play an even more critical role
as compared to intrinsic ENMs properties

Experimental testing and characterization should focus on approaches (and
report data) capable to track changes in the nanoparticle structure as a
function of environmental conditions.

Unlike intrinsic features, extrinsic ones are time dependent and may
change during ENMs lifetime while transported through different
environments

As discussed in detail in Section ‘Physics-based models for nanostructure
characterization’, some of the advanced material modeling approaches can
be used both for estimating the value of extrinsic advanced descriptors
under disparate conditions and for gaining further understanding on the
basic mechanisms underpinning their change in time.

Training datasets for ML based models are often imbalanced with the
most interesting material class being underrepresented

Use of undersampling and/or oversampling techniques trying to minimize
loss of information and overfitting. Explore data-level and algorithm-level
approaches. Develop new methods or adapt existing techniques, such as
SMOTE and its variants. More focus on evaluating model performance using
metrics suitable for imbalanced datasets, such as precision, recall, F1 score,
Kappa, and AUC.

Addressing class imbalance issues in supervised learning for
nanoinformatics.

Utilize data augmentation techniques, resampling methods (e.g.,
undersampling and oversampling), cost-sensitive training, and ensemble
approaches to mitigate imbalance and improve prediction accuracy.

Ensuring adequate data quality and quantity for effective supervised
learning.

Investigate ensemble methods such as bagging and boosting, feature
selection techniques, and regularization methods to enhance model
performance and stability.

Ensuring generalizability of ML models to new data. Evaluate model performance on external datasets to ensure generalizability
and robustness. Utilize cross-validation techniques to assess model
performance on different subsets of the data. Pay attention to model
overfitting, which occurs when the model is too complex and performs well
on the training data but poorly on new, unseen data. Regularization
methods such as L1 and L2 regularization can be used to reduce overfitting
and improve generalizability.

Selecting appropriate ML algorithms for specific data structures and
goals.

Consider various factors, such as data size, dimensionality, and complexity
when selecting specific ML algorithms. For example, Decision Trees and
Random Forests are good for mixed data types and provide interpretable
results, while Support Vector Machines (SVM) are suitable for high-
dimensional data and complex decision boundaries. k-Nearest Neighbors
(kNN) is a simple, instance-based method for small datasets, while Neural
Networks are effective for modeling complex patterns and relationships in
high-dimensional data but may require more computational resources.

Integration of different ML models for a comprehensive understanding of
ENM safety.

The literature provides numerous examples of ML models applied to
nanoinformatics. However, the majority of the published studies focus on a
single ML algorithm or approach. A comprehensive understanding of ENM
safety requires the integration of multiple sources of data, including
experimental and theoretical, and the use of different ML models to capture
the complexity and variability of the system. The integration of different ML
models can enable a more accurate and robust prediction of ENM safety by
incorporating different types of information and reducing the uncertainty
associated with each individual model. However, integrating different
models poses several challenges, including data compatibility, model
complexity, and the need for appropriate validation methods.

Materials Today d Volume xxx, Number xxx d xxxx 2023 RESEARCH
approach where they used a Self-Organizing Map to estimate rel-
ative distances between nanoparticles [85]. Kotzabasaki et al. also
used a hybrid approach to develope a model for the prediction of
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
genotoxicity of Multi-Walled Carbon Nanotubes. The latter
Authors used the information derived from the experimental
characterization of CNTs and a combination of Principal Compo-
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nent Analysis and supervised classification techniques to
improve the accuracy of the analysis in their parameters [84].

Similarly to the supervised learning, selecting an appropriate
method is often contingent on the specific goals and data struc-
ture. Unsupervised learning aims to identify underlying patterns,
structures, or relationships within the data without relying on
labeled outcomes. Several factors, including data size, dimen-
sionality, complexity, and the nature of the problem, influence
the choice of a specific algorithm. Some general guidelines to
consider when selecting an unsupervised learning algorithm
are as follows:

Clustering methods, such as K-means, DBSCAN, and hierar-
chical clustering, are suitable for partitioning data into groups
based on similarity or distance metrics. They are particularly use-
ful when exploring the intrinsic structure of the data or identify-
ing previously unknown subgroups.

Dimensionality reduction techniques, including Principal
Component Analysis (PCA) and t-distributed Stochastic Neigh-
bor Embedding (t-SNE), are employed to project high-
dimensional data into lower-dimensional spaces. These methods
can aid in data visualization, noise reduction, and improving the
performance of other machine learning algorithms.

Autoencoders, a type of neural network, are effective for unsu-
pervised feature learning and representation. They can be used to
reduce the dimensionality of data, denoise data, or learn more
complex and abstract features.

For the sake of clarity, in the Table 1 below, we summarize
what we believe are the most important open issues in data-
based modeling assessment of ENMs safety. Concurrently, we
provide recommendations on possible effective actions that
could help addressing such challenges in the near future.
Physics-based models for nanostructure
characterization
In general, physics-based modelling techniques can be grouped
according to the dominating length and time scales (or resolu-
tion), and equivalent representations at different resolutions
can be related to each other via a coarsening or fine-graining pro-
cedure, in which degrees of freedom (electrons, atoms) are aver-
aged out (forward-mapping) or introduced (back-mapping). For
instance, the familiar quantum methods at the electronic level
explicitly consider electrons and atoms, enabling them to calcu-
late several intrinsic properties of the material with great preci-
sion, including the electronic bandgap and surface reactivity.
At the atomistic level considered by classical molecular dynamics,
explicit electronic structures like bonds are only implicitly repre-
sented in a force field. The resulting enhanced sampling rates can
be exploited to study larger system, for instance, the long-term
conformational dynamics of one protein or the interaction
between a nanoparticle and several biomolecules.

Moving to even larger scales, interactions between ENMs and
their surroundings, reflected by extrinsic ENM properties, often
involve processes that exhibit a considerable disparity in length
and time scales. From a computational perspective, they, there-
fore, require yet another - mesoscopic - level to be tractable in sil-
ico: a level that is and will not be genuinely within reach of
atomistic methods for some time, despite the continuous
12
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advances in computer power. For instance, even when investi-
gating the uptake of tiny particles such as fullerenes (<1 nm)
by human cells (10–100 lm), which first cluster to larger aggre-
gates in solution before binding to a membrane due to their
hydrophobicity, the spatial scales that have to be adequately rep-
resented span many orders of magnitude.

This challenge is even more significant for the (competitive)
binding of one or more molecules like proteins onto a nanopar-
ticle, since they generally experience conformational changes on
various length scales upon absorption. The same holds for time,
as diffusion or translocation processes in dense molecular envi-
ronments like membranes and intracellular spaces take place at
timescales that are orders of magnitude greater than the fastest
vibrations inside a molecule - molecular bond stretching - that
set the elementary time scale. At the most basic level, this chal-
lenge can be faced by experiment, via trial and error for individ-
ual setups. Yet, as the experimental resolution is also essentially
limited at the bottom where many relevant molecular mecha-
nisms of interest take place, one may formulate theoretical or
computational answers for more well-posed questions.

In the following, we will concentrate on three extrinsic prop-
erties for which classical molecular dynamics significantly falls
too short: nanoparticle clustering, the formation of a protein-
corona, and nanoparticle uptake by a lung membrane.

A subset of advanced descriptors stemming from such calcula-
tions is reported in the Appendix, where more detailed informa-
tion is reported. We note that, especially at the mesoscopic level,
this overview of progress in the field of nanoparticle simulations
is not exhaustive. It should also be noted that much effort has
been put into ensuring equivalence at the highest level of resolu-
tion, e.g. by proper parameterization of tight-binding methods at
the quantum level and determination of proper force fields for
atomistic molecular dynamics. At the mesoscopic level, many
developments are quite recent and the issue of equivalence is
more complicated to satisfy, which hampers the application
range of genuine multi-scale methodology based on systematic
coarse graining for the aim of deriving descriptors for specific
materials. For this reason, many mesoscopic investigations have
focussed on evaluating mechanisms for generic setups, which
cannot be directly related to specific systems that are needed
for advanced descriptors. For details of such activities, we refer
the reader to published reviews [104].

Intrinsic advanced descriptors: Electronic level
The quantum–mechanical computation of nanoparticle proper-
ties relevant to nanotoxicology is still a challenge, as size and
time scales are shorter than typical biological phenomena. The
key aim is to reveal the electronic structure nature in complex
toxicity mechanisms. A valid strategy involves the accurate
determination of descriptors (heat of formation, lattice energy,
enthalpies of cation detachment) and band structure (bandgap,
HOMO and LUMO levels) that could be related to toxicity end-
points by data-based modelling. This approach was successfully
proved in Nano-QSAR models [52].

The computational costs of ab initio calculations, typically
density functional theory (DFT), remain a strong limitation to
the deployment of quantum-chemical descriptors, mainly due
the size of realistic nanoparticles (from few to hundreds of
rg/10.1016/j.mattod.2023.05.029

https://doi.org/10.1016/j.mattod.2023.05.029


R
ESEA

R
C
H

R
ES

EA
R
C
H

R
ESEA

R
C
H

R
ES

EA
R
C
H

R
ESEA

R
C
H

R
ES

EA
R
C
H

R
ESEA

R
C
H

R
ES

EA
R
C
H

R
ESEA

R
C
H

R
ES

EA
R
C
H

R
ESEA

R
C
H

R
ES

EA
R
C
H

Materials Today d Volume xxx, Number xxx d xxxx 2023 RESEARCH
nanometers) and the complexity of the surface region (often
unknown in experimental data). A detailed quantum chemical
description of those systems severely increases the time needed
to acquire data.

Faster computational schemes use the so-called quasi-ab initio
methods based on DFT, applying expansions of the atomic elec-
tronic structure using the Tight Binding approximation (DFTB)
[105]. Such techniques, which are 3,000 to 30,000 times faster
than regular DFT, allow considering more realistic sizes and con-
ditions such as solvation or molecule adsorption. To compute
dynamic effects, ab initio molecular dynamics (AIMD) is a
promising technique, yet at a too high computational cost.

In the last years, some of the aforementioned techniques have
been successfully applied to investigate nanosized titania with
sizes 2.2–4.4 nm. An example of a spherical 3 nm titanium diox-
ide nanoparticle is shown in Fig. 4, panels A and B. The model
contains more that 1200 atoms, 6000 electrons and it requires
50000 cpu hours [59] for routine DFT characterization. In panel
A, the titanium dioxide nanoparticle is shown, with an inset
highlighting some surface atoms ; it can be seen that they differ
from the bulk geometry. A scheme of DOS (Density of States) is
shown as an example of electronic descriptor associated with
chemical reactivity. In panel B, the decrease in energy during a
DFTB simulation in water is shown, and the corresponding
RDF (radial distribution function) for pairs of atoms (right),
accounting for the surface structure in the proximity of the sol-
vent molecules.

Other properties recently reported in the literature for tita-
nium dioxide nanoparticles concern crystallinity [106] and
hydration [107,108]. Interestingly, DFTB tools have been
recently applied to understand biological processes such as the
inactivation of SARS-CoV-2 virus [109], or the coating by biolog-
ical molecules [109,111]. It is however advised to carefully check
the applicability of DFTB methods for electronic structure char-
acterization as their accuracy critically depends on the parame-
terization; for instance the oxygen vacancy energy for different
titanium dioxide termination is not always well captured by
DFTB [112].

Extension of quantum-based methods to the field of (nano)
toxicology should be naturally observed in the next years, pro-
vided that a fundamental understanding of the physicochemical
behavior behind toxicological effects is achieved. This involves
several aspects.

First, the identification of new relevant descriptors based on a
detailed knowledge of the electronic structures of realistic com-
plex interfaces. The quality of the descriptors is crucial for the
precision of the results and should be carefully addressed. Exper-
iments focused on revealing the role of the surface in the toxicol-
ogy mechanisms should be designed to properly interplay with
electronic structure calculations.

Second, we envision interesting progress in the near future
due to the development of faster and more accurate techniques
to account for the complex structure and reactivity, based on
machine and deep learning [113–116] or automatized structure
screening tools (like Grand Canonical [117], evolutionary [118]
or clustering [119] algorithms). However, they should still be
tested on realistic nanotoxicity models and could possibly
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
become routine methods accounting for composition, coating
and biological media.
Intrinsic advanced descriptors: Atomistic and Molecular level
In atomistic (also called classical or all-atom) MD simulations,
atoms are represented by particles interacting according to New-
ton’s second law. In such an approach, electron dynamics is
neglected, dramatically speeding up the simulations (as com-
pared to DFT calculations), and system of larger dimensions
become affordable (with the typical computational domain hav-
ing up to dozens of nanometers edge length). Given the size
range of nanoparticles, MD is a powerful tool to study such sys-
tems in a detailed way that is often far from the experimental
capabilities.

With respect to the interaction of nanoparticles with biologi-
cal moieties, MD was recently used to determine the membrane
binding energies for nanoparticles made from three bare materi-
als (silver, silica and titanium dioxide) of three different sizes (1,
3 and 5 nm diameter) via MD-based Potential of Mean Forces
(PMFs) using umbrella sampling [120]. To cover the diversity of
responses that are possible for nanoparticle binding of a real
human lung membrane, which is facilitated by a mixture of dif-
ferent lipids, each with their own phase behavior, a membrane
with an equivalent lipid composition was considered. Calculat-
ing binding free energies via the PMF along a normal reaction
coordinate (typically the nanoparticle-membrane distance) for
real materials provides a new and useful advanced descriptor
for QSAR, especially when the particle size effect can be explored
within the domain where the membrane response is sensitive.
For non-spherical nanoparticles, however, the PMF calculation
becomes less trivial and involves several reaction coordinates.
Moreover, the nanoparticle sizes within reach of MD typically
only cover part of the domain of interest, and are significantly
below the experimental sizes.

While current MD results are exciting and make a first step
towards the in silico assessment of advanced nano-descriptors
for nanosafety, they also illustrate the essential challenge associ-
ated with more resolved computational approaches. In the first
place, experimental nanoparticles are usually at least 50 nm in
size, meaning that the maximum sizes considered in current
studies [104], i.e. in the order of the membrane thickness, are still
far frommost of the real applications, especially given that many
advanced descriptors are size-dependent and that it is unknown
if and how one may extrapolate. The most important drawback,
however, is the cost of individual simulations given the immense
nanoparticle design space, which comprises size, shape, elastic-
ity, charge, composition/hydrophobicity, and surface modifica-
tion [104], if we leave dynamic surface modifications, such as
the formation of a protein corona, by the surrounding medium
out of the picture. The majority of existing MD studies of
nanoparticle-nanoparticle and nanoparticle-membrane interac-
tions thus focus on the molecular understanding that can be
gained for specific experimental setups. A very promising appli-
cation of MD is the calculation of binding energies between vita-
mins and specific nanoparticle interfaces, represented as an
infinite slab, using metadynamics, for the purpose of validating
QSAR predictions and nano-descriptors [121].
13
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FIG. 4

Multi Scale Materials Modelling: from the electronic level to the atomistic description up to the mesoscopic level. Panel A: DFT level allows accounting
explicitly for electrons, providing accurate descriptors for geometry, energetics and electronic structure; Panel B: (left) Energy and temperature stabilization of
ZnO nanoparticle of 2 nm in water medium at 300 K for 10 ps simulation (centre) ZnO nanoparticle of 2 nm in diameter in water (right) Radial Distribution
Function of ZnO nanoparticle of 2n in water medium at 300 K. Panel C: bare and coated nanoparticles on the left and the potential of mean force for the
approaching of two identical nanoparticles in a vacuum and in water and the comparison with the original DLVO theory (Reproduced from Ref. [9] with
permission from the Royal Society of Chemistry); Panel D: Brownian Dynamics simulations of nanoparticle clustering, cluster size distribution on the left and
snapshot of the simulated system on the right (Reproduced with permission from Mancardi et al., MDPI Manomaterials 2022 [59]).
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Theoretical descriptors for small organic molecules [122] can
be readily calculated with various levels of theory to represent
most molecular features. In the case of nanoparticles, the size is
14
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the obvious limiting factor for the calculation of whole particle
nano-descriptors where all atoms are considered. To address
those issues, full particle molecular nano-descriptors developed
rg/10.1016/j.mattod.2023.05.029
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by Tämm et al. [123,124] were calculated directly and solely from
the structure of the considered nanoparticles. Such calculations
can be performed with LAMMPS program [125] together with
Buckingham potential [126] and Wolf summation [127]. The
developed set of atomistic nano-descriptors is based on the
chemical composition, potential energy, lattice energy, topol-
ogy, size, and force vectors. Reported studies based on the latter
approach can cover different properties of the nanoparticles
including also differentiating such properties in core and shell
regions of the nanoparticle [123,124,128]. The core region usu-
ally captures similar properties to bulk material, while the shell
region is expected to account for the special nanoparticle proper-
ties. While there are different methods for the in silico generation
of nanoparticles, there is still a need to define and study the
property differences in core and shell regions of the nanoparticle.
Therefore, a software tool has been recently developed to define
the shell depth for all nanoparticles (https://nanogen.me/shell-
depth). The tool requires the xyz type files as input and calculates
the optimal shell depth for nanoparticles together with the aver-
age coordination numbers for different atom types in the
nanoparticle.

As far as reactive phenomena are concerned, attempts to go
beyond classical force field simulations could be based on reac-
tive force fields (ReaxFF) [129–131]. Such an approach unlocks
the possibility of studying larger computational systems at a frac-
tion of the cost as compared to quantum-level simulations (i.e.
DFT and DFTB). However, it requires a delicate tuning of several
dozens of parameters against energetics from first principle sim-
ulations at lower scales. This fine-tuning often leads to a lack of
generality of force field parameters and may need a case-by-
case optimization.

Nanomaterial dimension and shape are important to deter-
mine the corresponding toxicological endpoints: the formation
of aggregates from small nanoparticles modulates the amount
of material entering the cells, regulating its interaction with the
DNA. Aggregates are too large to study using Classical Molecular
Dynamics: this kind of system can be simulated at the meso-
scopic level, as discussed below.

Moving from intrinsic to extrinsic descriptors
For the physics-based determination of intrinsic, and also for
extrinsic descriptors, DFT or classical MD are the first methods
of choice. In contrast to mesoscopic methods, which are based
on averaging, they incorporate the most direct and material-
specific reaction, chemical, conformational, and interaction
detail possible. Yet, for all these methods, the total computa-
tional effort invested for the determination of material properties
is proportional to the number of degrees of freedom (basis func-
tions, atoms or groups of atoms) that have to be taken into
account multiplied by the number of discrete (time) steps needed
for numerically stable minimization or equilibration of the sys-
tem at hand. Even on exascale high-performance computing
environments, where the original calculation/simulation can
be divided into parts and distributed over multiple processors,
nowadays even up to a million, this proportionality represents
a serious computational limitation [132].

Intrinsic properties, which are determined for (solvated) iso-
lated molecular systems, generally fall inside the reach of the
Please cite this article in press as: G. Mancardi et al., Materials Today, (2023), https://doi.o
most detailed DFT or MD modelling, because the system size
and equilibration times usually remain manageable. Yet,
although quantummethods have a clear advantage over classical
MD, their applicability is restricted to small systems compared to
most experimental ENMs, see Section ‘Intrinsic advanced
descriptors: Electronic level’, meaning that one should extrapo-
late or concentrate on surface properties. Classical MD pushes
this boundary up somewhat, and is capable of simulating, for
instance, the formation of a stable ligand coating around a
nanoparticle of relevant size, or the exploration of the protein
folding funnel on a second scale in explicit solvent. The most
detailed methods are thus particularly useful for providing impli-
cit descriptors.

This situation changes when dealing with extrinsic descrip-
tors. Nanoparticle aggregation and uptake, as well as biomolecule
absorption, are all at play upon the release of nanoparticles into a
biological environment. The length and time scales involved in
these processes are many orders of magnitude greater than the
elementary Angstrom and femtosecond scales of classical MD.
In particular, when computationally evaluating the nanoparticle
interaction with a surrounding bio-matrix of structured lipid
envelopes and unstructured mixtures of shorter and longer bio-
molecules, care should be taken in selecting proper system sizes.
After all, these systems should sufficiently represent the key ele-
ments in the larger open system and be large enough to avoid
computational artifacts due to boundary conditions.

As such, multi-scale approaches, in which the system is eval-
uated at a coarse time and length scale at some stage, become
compulsory [132]. In this context, fine-grained electronic and
atomistic methodology still serves a distinct role as a reference
for equivalence, via systematic mapping, or by providing struc-
tural input for realistic evaluation at a coarser level, e.g. relevant
nanoparticle-nanoparticle interaction potentials or (static) pro-
tein conformations for docking to a nanoparticle.

A general issue in assessing ecotoxicity by multiscale physics-
based modelling is that, historically, mesoscopic modelling pri-
marily aims at providing fundamental insight into phenomena
at a structural or kinetic level rather than determining accurate
extrinsic descriptors, since it puts stringent constraints on the
way atomistic or molecular detail is absorbed into a coarser
description. Also after coarsening it is wise to build up complex-
ity step-by-step, testing the averaging procedure at each incre-
ment. Therefore, in membrane binding, the current focus is on
calculating advanced extrinsic descriptors like binding energies
for passive rather than spontaneous (protein-induced) binding.
In the foreseeable future, the addition of more players, including
the many lipid types that render a cellular membrane,
membrane-bound and adsorbed proteins, and the cytoskeleton,
will become an option, and the particular role of these actors
can be studied in silico.

Extrinsic advanced descriptors: Mesoscopic level
The simulation of aggregation phenomena involving thousands
of nanoparticles is simply too demanding to be carried out by
all-atom MD, and coarse-graining procedures are mandatory to
make such simulations feasible. An effective strategy is to employ
Brownian Dynamics (BD) simulations, see Fig. 4, panel D [9,59].
Here, each nanoparticle is represented by a spherical bead charac-
15
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terized by the nanoparticle’s diameter and interacting with other
beads according to analytical equations describing the interaction
potential (e.g. fitted to calculated expression by means of classical
Molecular Dynamics for a nanoparticle pair, see Fig. 4, panel C).
Applying this coarse-graining procedure makes it possible to
determine new molecular descriptors ruling particle aggregation
that could be fed into QSAR models [59]. Additional challenges
faced by developing general computational and theoretical mod-
elling for understanding the nanosafety of ENMs stem from the
role of the environment in determining the observed toxicity.
Once the ENM enters a living organism, it gets in contact with
the biological molecules, in particular proteins and lipids.

Nanoparticle-proteins and nanoparticle-lipids interaction
could in theory be investigated using Brownian Dynamics simula-
tions, which can run even on a 16 core workstation, provided that
all pair interactions are known; in practice, this has not yet been
done because the calculation of the free energy profiles for each
pair by all-atom MD is too computationally demanding. Anyway,
this could be an interesting attempt to bridge the gap between the
molecular simulations scale and the experimental scale.

The oldest approach for computationally determining material
properties, i.e. the continuum mechanics pioneered in the 19th
century by Cauchy, is in fact most suited for screening purposes,
since it combines modest computational costs for realistic system
sizes with a few effective screening parameters. This screening idea
is at the basis of continuum Self-Consistent Field Theory (SCFT),
which was developed to describe phase behavior and phase sepa-
ration dynamics in block copolymers (represented as flexible
chains) based on an implicit molecular representation [133].

Rigid objects like nanoparticles have also been incorporated
into SCFT, primarily for the purpose of modelling polymer
nanocomposites [134], and we refer to early papers for details
about the different approaches [135–137]. While these field-
based methods possess a clear advantage of efficiency over
particle-based methods like AAMD and CGMD, which stems
from the choice to deal with ensembles rather than individual
chains, and SCFT interactions are of the desired many-body type
by definition, this is offset by the serious disadvantage of not
being able to represent specific interactions at the molecular level
and having no access to conformational detail. In addition, the
commonly used excluded volume interactions in SCFT do not
allow for phase transitions that can play a role in membrane
binding processes. Only recently, hybrid particle-field (hPF)
approaches such as hPF-MD [138] and single chain in mean field
(SCMF)[139] have introduced the ability to combine particle-
based (atomistic or segmental) molecular detail with the effi-
ciency and multi-body nature of Hamiltonians from continuum
theory like SCFT. Phase transitions and/or coexistence have also
been added recently [140]. Until these hybrid methods offer a
validated solution for the need to combine efficiency with speci-
ficity and molecular detail, we conclude that SCFT is useful for
the investigation of general phenomena, but not suited for the
extraction of extrinsic material descriptors.

A popular and very efficient representation of lipid membranes
is that of a thin elastic sheet without any molecular detail. Shape,
dynamics and responses to deformation are dictated by a contin-
uum Helfrich free energy that depends on a few collective proper-
ties like bending rigidity and lateral membrane tension, which
16
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can be directly related to specific membrane compositions via
particle-based simulation. An extended Helfrich model developed
later provided straightforward conditions for nanoparticle uptake,
i.e. the balance of energy needed to stretch and bend the mem-
brane around the nanoparticle and the energetic gain of nanopar-
ticle binding. The latter is provided by the adhesion energy
density of (coated) nanoparticles in the contact region and, as
was later found, also in near-contact regions. It should be noted
that extracting adhesion energy density for real materials from
more detailed descriptions is, unfortunately, a far from simple
task [141]. Early on, Deserno et al. used the continuum model
to show that a tensionless membrane can only adopt two states:
an unbound state where the membrane is flat, or a state where
the nanoparticle is fully wrapped by the membrane [142,143].
Accounting for factors that were missing in this original
Helfrich-based analysis, such as the membrane thickness and
interaction range, Raatz et al. and Spangler et al. found that also
partially wrapped cases could be stable [144,145]. While provid-
ing important energetic insight, and, therefore, being of potential
use for restricted but quick screening, the lack of lipid detail
already seriously hampers the use of such methods for extracting
extrinsic material descriptors. Another disadvantage is that the
nature of the membrane deformation upon nanoparticle binding
is not an outcome but required a priori, introducing a risk of over-
looking alternative binding mechanisms. The historical solution
to this issue is to employ highly coarse-grained particle-based
models with implicit solvent for studying generic membrane
dynamics and nanoparticle-membrane interactions. Using such
a model, the wrapping characteristics for nanoparticles up to
40 nm was considered, i.e. the entire range for the mechanism
is expected to switch, and a discontinuous transition from partial
to full wrapping was predicted around 10� 15 nm nanoparticles
[145,146]. Since these models lack solvent, which is known to
modulate the (free) energy landscape, and they also lack the reso-
lution to distinguish between different lipids, they do not repre-
sent a decisive step forward in the search for accurate descriptors.

Summarizing, one may conclude that these efficient molecule-
based mesoscopic methods are useful for extracting information
about general balances and mechanisms for systems of relevant
size, but they were never meant to provide extrinsic nanoparticle
descriptors. Just this, balancing (chemical) information and effi-
ciency with the aim to retain the necessary detail, is the main pur-
pose of recent developement in systematic coarse-grained
methodology. Although there are several ways to perform system-
atic coarse graining, depending on the characteristics of the refer-
ence atomistic system that one wants to reproduce, they are all
based on lumping groups of atoms into CG particles or beads.
The most popular method, CG Martini, combines 2–4 heavy
atoms in a single bead. Generating a description in terms of CG
beads does not only reduce the computational load, but it also
softens the interactions. As a result, also the system evolution is
significantly accelerated. Methods based on such types of coarse
graining have been applied to study lipid partitioning in general,
the binding of elastic nanoshells [147,148], the adhesion of aniso-
tropic nanoparticles [149,150] and of functionalized nanoparticles
[151,152]. Also the role of bending and adhesion in the distribu-
tion of multiple nanoparticles inside the membrane has been
investigated, both in terms of a generic representation in a highly
rg/10.1016/j.mattod.2023.05.029
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CG method [153] and for more chemically resolved CG represen-
tations [154–156]. Yet, while these CGMD studies have either been
designed to properly represent a particular experimental nanopar-
ticle or to obtain insight into more general binding mechanisms,
very few have focused on the challenge of developing a transfer-
able representation or map from the atomistic to the coarse-
grained domain. Yet, determining such a map that is valid for all
nanoparticles of the same material is a prerequisite for the extrac-
tion of advanced descriptors and trends that enable extrapolation.

One very recent example of such a new development is the
special CG nanoparticle representation within the familiar Mar-
tini CG approach that is required for studying binding and
translocation pathways of realistic silver nanoparticles across sol-
vated lipid barriers in the lungs, see Fig. 5. Whereas the mod-
elling community has thus far generally approached the
fundamentals of such large-scale phenomena via implicit-
solvent continuum [142,143] or highly coarse-grained descrip-
tions [145,146,157], a core–shell CG representation was devel-
oped that is transferable with respect to size and enables the
simulation of relevant nanoparticle sizes including solvation
effects, in the size range where interesting switching in binding
behavior is expected [158]. The development of this transferable
map was based on matching potentials of mean force (PMFs) for
silver nanoparticles obtained using all-atom molecular dynamics
[120]. The systematic development of transferable CG represen-
tations for the other materials, such as silica and titanium diox-
ide that were also considered in atomistic studies, is a future
desire. As the determination of binding free energies for CGMD
FIG. 5

(a) All-atom MD of nanoparticle/membrane/water system, (b) all-atom MD bindi
binding free energy for silica for three nanoparticle sizes (graphs reproduced
Standard uniform CG model and the new core–shell CG model, reproduced w
increasing hydrophobicity, the mechanism of direct insertion into the model lu
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NP by standard methods like umbrella sampling gets prohibitive
with increasing size, string methods could be employed as an
alternative [159].

A key requirement in nanosafety assessment is how to include
systematically a detailed molecular description of ENM-protein
interactions. In biological environments, proteins organize on
ENM surfaces forming the so-called nanoparticle protein corona
(NPC) structures which play a central role in biological interac-
tions and nanotoxicity [160–162]. The NPC formation around
a variety of nanoparticles was evidenced and characterized in
terms of its biochemical composition by several experimental
studies [163,164]. However, its effects on biological interactions
and implications for nanosafety considerations remain largely
unknown [163,164–169]. Similarly as above, a main research
challenge is how to develop efficient yet accurate computational
methods and tools that can bridge the gap between a detailed,
molecular-level description of ENMs interacting with solvents
and biomolecules such as proteins at an atomistic level, and
the much larger scale (i.e., tens or hundreds of nanometers to
micrometers) corresponding to biological structures such as
NPCs or cellular membranes [170]. Coarse-grained computa-
tional methods of protein-covered nanoparticles are often lim-
ited to modeling entire proteins as single particles. Such
models are successful in showing how nanomaterials type, size,
and shape can lead to diverse protein composition of the NPC
[171,172]. However, detailed atomistic aspects of modeling pro-
tein interactions are required to calculate other key
experimentally-relevant mesoscopic descriptors such as the
ng free energy for three different sizes of Ag nanoparticles, (c) all-atom MD
from Ref. [120] with permission from the Royal Society of Chemistry). (d)
ith permission from Singhal et al., MDPI Nanomaterials, 2022[158]. (e) With
ng membrane switches to a wrapping mechanism..
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FIG. 6

(a) Schematic atomistic model of an NPC. A ”soft corona” layer (dashed line) of loosely bound proteins surrounds a ”hard” corona layer (continuous black line),
proximal to the ENM’s surface. Even for spherical nanoparticles, the overall shape and biophysical properties of the NPC surface will depend on its
composition. (b) Comparing values of the SASAH for various coronas around a 4 nm spherical silica nanoparticle (dashed) with the values calculated for similar
protein aggregates without including a nanoparticle (continuous). (c) Atomistic corona models allow the identification of protein residues that may play
significant roles at the nanoparticle-protein interfaces. (d-e-f) Building an atomistic model of an NPC by sequential docking of protein structures (mucin, pre-
equilibrated using MD) on a spherical silica nanoparticle. Mesoscopic descriptors such as SASAH can be estimated as statistical averages over results from
docking multiple representative structures.
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hydrophobic fraction of the solvent accessible surface area
(SASAH) (see Fig. 6(a-b-c)). Recent developments in atomistic
and multiscale computational methods allow unique opportuni-
ties to probe the detailed molecular mechanisms that modulate
interactions at bio-nano interfaces [173,174,29]. This approach
can be extended to the calculation of mesoscopic biophysical
descriptors for an NPC and relies on simplified models allowing
further computational studies of protein interactions with ENMs
(see Fig. 6(a-b-c)) [163]. This has the potential of (i) unveiling the
role of specific proteins in NPC’s stability and biophysical prop-
erties (e.g., hydrophobic surface area, charged patches), and (ii)
quantifying the way in which nanoparticle corona properties
and protein–protein interactions in the corona are modulated
for different nanoparticle types. First, all-atommolecular dynam-
ics (MD) simulations of key plasma proteins (e.g., human serum
albumin, fibrinogen, immunoglobulin gamma-1 chain-C, com-
plement C3, and apolipoprotein A1) can be used to study adsorp-
tion on typical nanoparticle surfaces (e.g., titanium dioxide or
silica). For binary protein–protein interactions (e.g., only two
interacting proteins) it is possible to perform exhaustive atomis-
tic MD simulations, both in the vicinity of nanoparticle surfaces
and in bulk to compare directly the results and infer the influ-
ence of the presence of specific nanoparticles on the dynamic
18
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and thermodynamics aspects of protein–protein interactions.
Fig. 6(c)) illustrates the possibility to identify residues crucial to
protein-nanoparticle interactions in a specific system (here,
human serum albumin-titanium dioxide). In the second stage,
the molecular mechanisms of protein-nanoparticle interactions
are probed by looking at the dynamic and structural proteins
of several proteins (and possibly lipids) in the crowded environ-
ment of nanoparticle coronas, using also molecular docking sim-
ulations and, depending on systems size, coarse-grained
simulations of mixtures of multiple proteins [175,176] that can
investigate the formation of the protein layer on the nanoparti-
cle surface, as illustrated in Fig. 6(d-e-f). Preliminary studies on
multi-protein docking on nanoparticles, suggest that knowledge
of protein composition and conformations (e.g., refined from
MD simulations) can be used to estimate the overall biophysical
properties of NPCs, such as the hydrophobic fraction of their
solvent-accessible surface area, and surface charge distributions
[177]. Outstanding challenges in modeling the interactions of
biological molecules in contact with ENMs are to extend the
capability of docking programs to include more than just a few
tens of proteins [178–181], and to include detailed information
on the specific corona molecular composition that is seldom
available [170]. Additionally, besides proteins, it is expected that
rg/10.1016/j.mattod.2023.05.029
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future studies will also include (i) other components such as
lipids [182] and glycans [183] which play pivotal roles in ENMs
uptake and could also be key for the modeled ENM systems, as
well as (ii) an accurate description of the corresponding surface
functionalization [184]. Finally, metallic nanoparticles deserve
a special mention as they are routinely employed in cancer ther-
apy, where they need to be selectively delivered to the tumor tis-
sues. Among all metals, gold nanoparticles are widely used as
radiosensitizing agents because of their biocompatibility and
simplicity of synthesis [185]. Coated metallic nanoparticles are
used in catalysis, self-assembly, imaging, drug delivery, and sens-
ing applications. Metallic nanoparticles are very sensitive to the
local environment because of a phenomenon called “localized
surface plasmon resonance” deriving from the collective oscilla-
tion of surface electrons. [186] When coated with a monolayer
ligand, the metallic nanoparticles’ properties such as metal
reduction and colloidal stability can be adjusted for the desired
application [187]. Atomistic and mesoscale simulations allowed
an understanding of the atypical distribution of multiple ligands
on gold and silver nanoparticles observed in the experiment
[188], as well as the adsorption of biomolecules on gold nanopar-
ticles of different sizes [189]. We report in Fig. 7 an example of
how molecular modelling simulations (here all-atom molecular
dynamics simulations) can be used to investigate the behavior
of metallic nanoparticles, in particular, to capture adsorption
phenomena of polymers. Interestingly in [190], it is clearly
shown that the design of shape and topology of the surface in
metallic nanoparticles is a rather effective strategy to control
FIG. 7

Upper panel: MD snapshots of self-assembly simulations of 60 PLGAs and the Au
permission from Cappabianca et al., ACS Omega, 2022[190]; Bottom panel: Eq
binary mixtures of surfactants with varying length difference or bulkiness differ
represent head groups of the two species of surfactants, from Ref. [188]. See te
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the preferential polymer coating in some particle regions as com-
pared to others. Furthermore, using similar simulations tools,
other works [188] have investigated the precise patterning of
coadsorbed surfactants on silver and gold nanoparticles. Hence,
by targeting more effective control on the crystallographic fea-
tures of metallic nanoparticles, we can envision an improved
control of ENMs coating thus also significantly affecting their
toxicological properties.
Discussion: Challenges and perspectives
On one hand, from the above overview, it clearly emerges that
the accuracy in predicting possible hazards of ENMs critically
relies upon the ability to use features beyond what can be
accessed in typical experimental tests and characterization.
Importantly, those features depend on intrinsic and extrinsic
properties aiming at describing both materials and biological
environments.

Nonetheless, when it comes to the direct link of ENMs to their
expected toxicity endpoints, it is fair to say that the current sta-
tus of the development of the hardware and algorithms does not
allow a brute-force assessment of nanosafety. A more viable
approach is expected to be the calculation of intrinsic and extrin-
sic advanced descriptors using a plethora of methodologies
mostly developed and used in other fields (e.g. materials model-
ing and biochemistry) to extract input features for data-based or
statistical models (e.g. QSAR, ML algorithms) to finally link them
to the toxicity endpoints.
nanoparticle in aqueous solution at 0, 0.5, 50, and 100 ns, reproduced with
uilibrium structures obtained by mesoscale simulations of self-assembly of
ence on a spherical nanoparticle. Dark (red) beads and light (yellow) beads
xt for more details..
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However, even the latter approach comes with formidable
challenges, mostly associated with the size and complexity of
ENMs of practical use. On one hand, ENMs of experimental
interest may have dimensions orders of magnitude larger than
their computationally affordable counterparts. On the other
hand, precise compositions of particles and their coating are
often known with little detail level: This calls for a crucial effort
of the relevant scientific community in future experimental
works where, in addition to the valuable measurement of toxico-
logical endpoints, a more comprehensive characterization
beyond nominal values of ENMs is requested.

Furthermore, currently, an interesting (and perhaps necessary)
approach seems to be the hybridization of pure physics-based mod-
els with disparate data sources. In particular, due to a practically
unlimited number of different ENMs with great chemical and geo-
metrical variety, a truly extended adoption of advanced descriptors
in data-based models for nanoinformatics looks inconceivable
without leveraging high-fidelity multiscale modeling data from
both literature and crude or analytical (yet computationally effi-
cient) approximations models. As a representative example, biased
classical molecular dynamics simulations can certainly be used to
accurately compute the Potential of Mean Force between nanopar-
ticle pairs. At the same time, classical approaches such as the theory
of Derjaguin-Landau-Verwey-Overbeek (DLVO) cannot be dis-
carded and efforts should be devoted to finding new approaches
capable of orchestrating and integrating such multi-fidelity and
multi-source data. Another example of a similar synergy has been
described above in the manuscript and it has to do with CGMD
based simulations of cell membranes and the corresponding con-
tinuum Helfrich free energy models.

One possibility would be the adoption of descriptors from
crude approximation models, characterized by a lower fidelity
level and available literature data as a subset of features for ML
models where physics-based model results are used as training
sets. Such an approach has been proven successful in signifi-
cantly improving ML model predictions in the presence of a
small or incomplete training dataset [11,193]. We thus envision
a more comprehensive and multi-layered approach where
detailed physics-based models (first layer), literature/experiment
data (second layer), and crude approximation models (third
layer) are synergetically managed for the estimate of relevant
descriptors by means of surrogate (statistical) and ML models
(see Fig. 1, bottom panel). In this respect, further research is
requested to investigate to what extent the small variance of
high-fidelity data from physics-based model predictions com-
bined with the high-variance (and low-fidelity) of other sources
can deliver descriptors predictions with high/medium fidelity
and variance that are suitable for QSAR/QSPR models.

It is also worth stressing that, beyond the mere usefulness of
advanced descriptors for data-based models targeting nanosafety
assessment, further improved physics-based models describing
phenomena from the electronic up to the mesoscopic level can
offer the unique opportunity of gaining insights at the nano-
level, which are hardly accessible by experimental techniques
and therefore remain critical for i) unveiling basic mechanisms
behind the possible hazardous character of ENMs; ii) possibly
complement information from less detailed and less demanding
models.
20
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For all the above reasons, we expect and hope that the pro-
gress of high-performance computing power combined with
advanced tools for acceleration of atomistic simulations [194]
can soon calculate advanced descriptors more competitively as
compared to experiments in terms of both the amount and qual-
ity of generated data.

Another interesting aspect to highlight is related to the possi-
ble exploitation of the large body of knowledge available in the
context of modern computational approaches to investigate
nanoparticles in other technological fields such as catalysis and
materials science [195–196,77,197–200]. Specifically, we refer to:

1. High-throughput screening of nanoparticles in drug delivery
[201]

2. Barcoded nanoparticles for high throughput in vivo discovery
of targeted therapeutics [202].

3. Computational high-throughput screening of alloy nanoclus-
ters for electrocatalytic hydrogen evolution [203]

It would be desirable that the Safe and Sustainability-by-
design strategies in toxicology could take advantage of this
knowledge and tools, combining efficiently biology and medi-
cine with physics and chemistry.

Furthermore, an even larger amount of data on nanosafety of
ENMs will likely be generated in the near future. It is therefore of
increasing importance to comply with the FAIR principles, so
that metadata and data can be efficiently reused in data-based
models for predicting the hazard of ENMs. Specifically, in this
respect, the role of databases for collecting and storing a large
amount of curated and well structured data is likely to play a
major role soon. As such, we discuss one prototypical case study
in the following subsection.

Finally, as a long-term goal, we expect that nanoinformatics
models based on advanced descriptors could be integrated with
AOPs, to better assess the potential exposure throughout the
entire life of the nanoparticles. In this respect, modern grouping
strategies taking into account the mode of actions and developed
based on ML techniques processing data from omics studies
appear particularly promising and therefore it will be specifically
discussed below in a dedicated subsection.
Databases: The eNanoMapper case study
Storage and organization as well as the organization of curated
data from disparate sources within databases appear critical for
nanosafety assessment. To this end, below we review a prototyp-
ical case study. The eNanoMapper database is an open-source
chemical substance data management solution [204], adopted
by more than 20 European projects and facilitating the Findable,
Accessible, Interoperable and Reusable (FAIR) data collection and
reuse of the nanosafety community. To provide aggregated find-
ability, accessibility, and interoperability across project-specific
databases, the Nanosafety Data Interface (https://search.data.
enanomapper.net) was created, and currently represents one of
the largest searchable nanosafety data collections [205]. The
eNanoMapper is based on data and software originally developed
to represent industrial chemicals and related experimental or cal-
culated data. It was one of the first cheminformatics platforms to
offer open REST Application Programming Interface (API) sup-
rg/10.1016/j.mattod.2023.05.029
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porting integrated services such as data, descriptor calculations,
and ML [206,207]. A visual representation of the eNanoMapper
data model is reported in Fig. 8, where substances are character-
ized by names and IDs, which can be multiple, the composition
refers to the components of the material (core, coating, chemical
structure), each of them having different properties; the same
material can have different compositions. A protocol consists
of measurements of a specific endpoint in given conditions,
related protocols form an investigation entity; finally, different
substances can be grouped into an assay entity when the same
protocol applies, giving an extremely flexible structure [208].
With the explosive growth of material databases, ML frame-
works, and their success in material modeling, it is critical to
explore the link between the estimated material properties and
experimentally measured safety or functional properties. In
NanoInformaTIX [36], both experimental data from selected
use cases and also calculated descriptors are stored in the
eNanoMapper database and an effort is devoted towards provid-
ing open source libraries to facilitate integration with data anal-
ysis frameworks and developing exploratory data analysis
methods. The validation of computational models relies on
high-quality experimental data; such data may not always be
complete, and it is necessary to identify data gaps and, eventu-
ally, to generate additional data based on experimental and the-
oretical chemistry and on biology. The goal of this
computational and theoretical endeavor is the realization of safe
nanoparticles and nanomaterials. To fulfil such expectations,
theoretical descriptors must be translated into measurable
parameters, and this challenge entails a deep knowledge of the
mode of action of nanoparticles that lead to harmful outcomes.
On another level, identification and estimation of theoretical dri-
FIG. 8

eNanoMapper/Ambit data model adapted from Ref. [208]. Substances are chara
multiple. Complex relations between the substance components can be specifi
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vers of toxicity can facilitate the prioritization of experimental
tests, which, due to the uncontrollable inhomogeneity of any
ensemble of nanoparticles, is always needed for a robust risk
assessment of nano-enabled technology.
Grouping approaches
Regulatory processes, which often rely on in vivo testing, are out-
paced by the increasing number of ENMs on the market. To cope
with this situation, the lack of data and to ensure the safety of
new materials, grouping approaches emerge as an interesting
method. Those approaches are accepted within the overarching
EU chemicals regulation REACH (EC 1907/2006) and are com-
monly used to consider more than one chemical at the same
time [209–211]. Within an established group, data gaps can be
filled by read-across. Here, existing data on a particular (eco) tox-
icological endpoint linked to one or several source chemicals can
be employed to estimate the same property of one or more target
chemical(s).

Chemicals can be grouped on the basis of well-defined physic-
ochemical similarities, like common functional groups, precur-
sors, and/or breakdown products. However, ENMs pose an
additional challenge compared to chemicals, since there is a very
limited understanding of how individual physicochemical
parameters influence cellular uptake and toxicity. In addition,
the properties of ENMs can change depending on the surround-
ing medium and over time. To establish grouping approaches for
ENMs, it is essential to understand how the individual physico-
chemical properties are linked to toxicity. To support a grouping
justification, additional information on a common Mode of
Action (MoA) or toxicity mechanism is advantageous [209].
The MoA of a substance describes the functional or physiological
cterized by their composition and identified by name and ID, which can be
ed.
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changes it causes to a living organism or cell. One of the draw-
backs is that toxicity mechanisms are only partially understood,
and for plenty of ENMs variants, the precise MoA remains elu-
sive. In this regard, the potential of systems biology to contribute
to the development of reliable grouping approaches for ENMs
should not be obliterated. Modern omics-based approaches (tran-
scriptomics, proteomics, metabolomics), in combination with
sophisticated bioinformatics and data analysis tools, are very
important to characterize toxicity pathways and unravel rela-
tionships between individual physicochemical properties and
cellular responses. This knowledge can then be applied in the
context of grouping and categorization. Moreover, omics
approaches are of relevance for the development of AOPs and
to establish reliable, comprehensive testing strategies building
on the known MoA [212]. AOPs are a conceptual construct that
integrates known information from various sources in a sequen-
tial chain of causally linked key events that cover different levels
of biological organization (i.e. cellular, organ level) starting with
a molecular initiating event leading to the final adverse outcome
[213]. The knowledge gained from grouping approaches can
then be directly used for SSbD of ENMs. Currently, there are sev-
eral ENM grouping frameworks with different approaches [214–
216]. However, there are only very few case studies for which
the frameworks have been applied to ENMs.

Recently, several publications have taken advantage of differ-
ent techniques, including ML approaches. [217–219] Addition-
ally, the incorporation of omics datasets to support the
FIG. 9

Schematic representation of the random forest approach used for grouping of
and an activity label is assigned to each ENM (based on the outcome of biologica
are divided into active and passive materials, based on splits made on their phys
select only the most important physicochemical properties for achieving maxi
validated in a leave-one-out approach. This approach can be used to predict th
are known.
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development of more accurate grouping strategies of ENMs take
into account the mode of action [220–223].

Bioinformatics and ML techniques are thus essential when
approaching cellular effects comprehensively, particularly in
combination with high-throughput techniques like omics.
Fig. 9 depicts the ML random forest approach used for the group-
ing of ENMs, with this strategy, the biological activity of ENMs
can be predicted provided that physicochemical properties are
known. Omics studies are a massive source of data sets, which
comprehensively describe the cellular alterations caused by any
treatment, importantly in this case, by ENMs. Thus, omics meth-
ods are highly useful to identify the MoA of ENMs to be
employed in the grouping approaches as additional biological
descriptors. So far, most of the efforts to understand the MoA
of ENMs have been undertaken in the field of transcriptomics
[224,225]. However, proteomics can be even more informative
since it depicts the cellular alterations much closer to the pheno-
type than transcriptomics. The challenge here is the standardiza-
tion of the methods, particularly for data analysis and
interpretation [226,227].

Meta-analysis of publicly available proteome data targeted to
specific organ alterations is being carried out to investigate the
MoA of ENMs within the organ, based on proteome alteration evi-
dence. Relevant datasets from publicly accessible proteomics data-
bases such as PRIDE are identified in the first step. These data do
not necessarily involve only ENM treatments, but also other alter-
ations like disease, cancer, and chemical treatments. A recently
developed workflow by the BfR for standardized data analysis
ENMs. ENMs are described by a set of different physicochemical properties,
l assays). ENMs are then subjected to a random forest model, in which ENMs
icochemical properties in each tree. Recursive feature elimination is used to
mum accuracy. To address and avoid a large overfitting bias, the model is
e biological activity of new ENMs, for which the physicochemical properties
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was applied to the data sets. These results are then integrated into
proteomics data de novo generated from studies evaluating the
effect of ENMs in vitro. Correlations between nanomaterials
effects and organ-specific alterations can thus be detected.[228]
Concluding remarks
Gaining a clear and deep rationale behind the nanosafety charac-
teristics of ENMs is a multifaceted issue still posing formidable
challenges: nanomaterials present far more complex physico-
chemical properties than their macroscopic counterparts, having
high surface reactivity and the ability to enter living cells, poten-
tially causing damage to cells or entire organisms.

In this work, mostly focusing on a computational perspective,
we made an effort to review and discuss state-of-the-art physics-
based models for computing both intrinsic and extrinsic ENMs
properties that are crucial for setting up reliable data-based mod-
els for nanosafety assessment. In this spirit, one major aim of this
work was the identification of the most critical roadblocks
towards computer-aided support of nanosafety assessment.
Importantly, we have identified and discussed opportunities in
advancing the field and in opening research directions, as conve-
niently summarized in Tables 1 and 2. We have extensively illus-
trated recently-used methods for computing advanced
descriptors and the current associated challenges mainly leading
TABLE 2

Summary of recommendations and possible future research avenues in the
descriptors.

Modelling technique Recommendations for future research

Quantum Computations (DFT and
DFTB)

Those are among the most time-consum
methodologies based on machine learni
should be paid to their robustness and
physico-chemical approaches, such as th
on a regular basis, to capture toxicity m
increase the predictive power.

Reactive Atomistic Simulations Suitable reactive force fields are still to b
electrical charges. In this respect, reaxFF
expected to likely play an important role
DFT and DFTB computations.

Classical All-Atom Molecular
Dynamics (AAMD)

Calculate the adsorption affinity of small
as metadynamics. Molecular nano-descr
large size particles, nonetheless they are
this constraint. AAMD is also needed for
up future calculations, an MD database o
could be pre-built for proteins that play a
the accuracy of docking-based calculatio

Molecular Protein Docking Current docking software is optimised fo
approaches rely on initial AAMD studies
optimization for sampling efficiently and
programs should be able to handle mult
in a much larger number than currently
approach to bridge the gap between the
of PPIs and protein-ENM interactions is
approaches.

Coarse-Grained Molecular
Dynamics (CGMD)

Estimating absorption energy densities b
PMFs for all possible core–shell combina
When addressing extrinsic descriptors fo
configurations, by adding many lipid typ
the cytoskeleton.

Brownian Dynamics Simulating nanoparticles in contact with
scale and the experimental scale. More e
spherical or anisotropic particles.
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to low data variance despite the expected higher fidelity. Hence,
possible suggestions on hybridization strategies for moving
towards models with both higher data variance and fidelity, as
well as the inclusion of Adverse Outcome Pathways (AOPs) are
envisioned.

We stress that the reported analysis and suggested guidelines
for future reflect our current best understanding of the field after
several years of discussion among experts in multi-disciplinary
yet disparate related fields. As such, we hope that this work can
serve as a stimulus for future multidisciplinary research, and
could thus help nucleate further breakthroughs in the computa-
tional nanosafety assessment of ENMs.
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context of using material modeling techniques for computing advanced

ing methods for extracting advanced descriptors. The most recent
ng algorithms are promising to expand the set of systems, but attention
the energetic needs associated with massive calculations. Pluridisciplinar
ose widely used in other technological fields like catalysis, should be used
echanisms on the molecular level. This may lead to new descriptors and

e developed for accurately predicting the development of ENMs surface
[191] or the more recent Machine Learning based potentials [192] are
in coping with sufficiently large particles beyond the capacity of standard

metabolites on nanoparticles using enhanced sampling techniques such
iptors in [124] have proved very computationally effective to cope with
limited to non-metallic particles: Additional effort should be spent to relax
the molecular docking of proteins to ENM surfaces (see below). To speed
f typical conformations and their corresponding thermodynamic weights
major role in interacting with ENMs (i.e., albumin, mucin, etc.) to increase
ns of nano-descriptors (e.g., SASAH ).
r protein-drug and protein–protein interactions (PPIs). Docking
(see above) of the proteins used. Future research would benefit from
accurately protein-ENM surfaces (i.e., inorganic materials). Future docking
iple molecules, including larger proteins with diverse conformations and
possible (i.e., from tens to hundreds or even thousands). One possible
limitations of docking programs and the complex and large-scale nature

the development of advanced data-driven and machine learning

y AAMD for pre-screening by continuum Helfrich methods. Calculating CG
tions to generate a matrix for mapping material-specific atomistic PMFs.
r ENMs-cell membrane binding, overcoming the current passive
es rendering the cellular membranes as well as membrane proteins and

biological molecules to bridge the gap between the molecular modelling
ffective approaches are needed to compute and use PMFs in case of non-
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Appendix AList of physics-based descriptors that can be calculated through materials modelling techniques

Scale Method Advanced descriptor Units Typical values for a 3
nm TiO2 nanoparticle

Notes and limitations

Quantum - Space scale:
10�11-10�9m Time
scale: static

DFT & DFTB Standard enthalpy of formation eV -9 to �8 Very accurate but ideal only for small
nanoparticles up to 4 nm in diameter.
Highly dependent on the basis set
and the pseudopotential of choice.
Absolute energy values are only
useful for comparison with other
structures.

Total energy eV -90000 to �10000
Electronic energy eV � �88000
Energy of the Highest Occupied Molecular Orbital
(HOMO)

eV � �3.2

Energy of the Lowest Unoccupied Molecular Orbital
(LUMO)

eV � �3.1

HOMO–LUMO energy gap eV � 0–3
Valence band width eV 7.3
Conduction band width eV 2.6
Fermi level eV � �3.3
Hydration energy eV � �143
Vertical ionization potential eV � 3.4
Vertical electron affinity eV � �3
Oxygen vacancy formation energy eV 3 to 4

Molecular, atomistic -
Space scale: 10�9-
10�8m - Time scale:
static

Quantum mechanics at
DFT level

Chemical composition (x9) - N.A. Fast to calculate because there is no
need of expensive energy
minimization. Not for metallic ENMs.
Calculable also for larger
nanoparticles up to 60 nm. Possible
use in QSAR and ML models. Detailed
description of those quantities can
be found in Refs. [122,124]

Potential energy (x9) eV -75 to �18
Topology descriptors (x9) - 2.5 to 6
Size descriptors (x3) Å, Å2, Å3 N.A.
Lattice energy descriptors (x5) eV, eV/Å, eV/Å2,

eV/Å3

-110 to 0

Force field descriptors (x27) - N.A.

ReaxFF MD Surface charge C/m2 -0.06 Need a reactive force field developed
for a similar system

Particle-Membrane binding free energy eV � 0
Aggregation free energy kJ/mol 54
Solvent Accessible Surface Area (SASA) Å2 61.27 �s 0.68 Note: See Ref. [120].

Molecular scale with
atomistic resolution.
Space scale: 10�10-
10�8m

AAMD and Molecular
Docking

Hydrophobic SASA fraction (SASAH ) % SASA 33.5–54.5

Polar SASA fraction (SASAP ) % SASA 40–50 Note: estimated for 4 nm TiO2 NPs
with diverse protein compositions of
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