153 research outputs found

    Heritability of fetal hemoglobin, white cell count, and other clinical traits from a sickle cell disease family cohort

    Get PDF
    Sickle cell disease (SCD) is the most common monogenic disorder in the world. Notably, there is extensive clinical heterogeneity in SCD that cannot be fully accounted for by known factors, and in particular, the extent to which the phenotypic diversity of SCD can be explained by genetic variation has not been reliably quantified. Here, in a family-based cohort of 449 patients with SCD and 755 relatives, we first show that 5 known modifiers affect 11 adverse outcomes in SCD to varying degrees. We then utilize a restricted maximum likelihood procedure to estimate the heritability of 20 hematologic traits, including fetal hemoglobin (HbF) and white blood cell count (WBC), in the clinically relevant context of inheritance from healthy carriers to SCD patients. We report novel estimations of heritability for HbF at 31.6% (±5.4%) and WBC at 41.2% (±6.8%) in our cohort. Finally, we demonstrate shared genetic bases between HbF, WBC, and other hematologic traits, but surprisingly little overlap between HbF and WBC themselves. In total, our analyses show that HbF and WBC have significant heritable components among individuals with SCD and their relatives, demonstrating the value of using family-based studies to better understand modifiers of SCD

    Inherited causes of clonal haematopoiesis in 97,691 whole genomes

    Get PDF
    Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2,3,4 and coronary heart disease5—this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues

    HIV-1 Vpr-Induced Apoptosis Is Cell Cycle Dependent and Requires Bax but Not ANT

    Get PDF
    The HIV-1 accessory protein viral protein R (Vpr) causes G(2) arrest and apoptosis in infected cells. We previously identified the DNA damage–signaling protein ATR as the cellular factor that mediates Vpr-induced G(2) arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G(2) arrest. We find that entry into G(2) is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45α was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G(2) checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G(2) arrest are indistinguishable from those of HIV-1(NL4–3) vpr, providing additional support to the idea that G(2) arrest and apoptosis induction are mechanistically linked

    Climate change facilitated the early colonization of the Azores Archipelago during medieval times

    Get PDF
    Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700 -60/+50 and 850 -60/+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likelyinhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands

    Activated plasma coagulation β-Factor XII-induced vasoconstriction in rats

    Get PDF
    By inducing BK (bradykinin)-stimulated adrenomedullary catecholamine release, bolus injection of the β-fragment of activated plasma coagulation Factor XII (β-FXIIa) transiently elevates BP (blood pressure) and HR (heart rate) of anaesthetized, vagotomized, ganglion-blocked, captopril-treated bioassay rats. We hypothesized that intravenous infusion of β-FXIIa into intact untreated rats would elicit a qualitatively similar vasoconstrictor response. BN (Brown Norway) rats received for 60 min either: (i) saline (control; n=10); (ii) β-FXIIa (85 ng/min per kg of body weight; n=9); or (iii) β-FXIIa after 2ADX (bilateral adrenalectomy; n=9). LV (left ventricular) volume and aortic BP were recorded before (30 min baseline), during (60 min) and after (30 min recovery) the infusion. TPR (total peripheral resistance) was derived from MAP (mean arterial pressure), SV (stroke volume) and HR. Saline had no haemodynamic effects. β-FXIIa infusion increased its plasma concentration 3-fold in both groups. In adrenally intact rats, β-FXIIa infusion increased MAP by 6% (5±2 mmHg) and TPR by 45% (0.50±0.12 mmHg/ml per min), despite falls in SV (−38±8 μl) and HR [−18±5 b.p.m. (beats/min)] (all P<0.05). In 2ADX rats, β-FXIIa had no HR effect, but decreased SV (−89±9 μl) and MAP (−4±1 mmHg), and increased TPR by 66% (0.59±0.15 mmHg/ml per min) (all P<0.05). After infusion, adrenally intact rats exhibited persistent vasoconstriction (MAP, 10±1 mmHg; TPR, 0.55±0.07 mmHg/ml per min; both P<0.05), whereas in 2ADX rats, MAP remained 5±1 mmHg below baseline (P<0.05) and TPR returned to baseline. End-study arterial adrenaline (epinephrine) concentrations in the three groups were 1.9±0.6, 9.8±4.1 and 0.6±0.2 nmol/l respectively. Thus, in neurally intact lightly anaesthetized untreated rats, β-FXIIa infusion induces both adrenal catecholamine-mediated and adrenally independent increases in peripheral resistance

    miRNA-Mediated Relationships between Cis-SNP Genotypes and Transcript Intensities in Lymphocyte Cell Lines

    Get PDF
    In metazoans, miRNAs regulate gene expression primarily through binding to target sites in the 3′ UTRs (untranslated regions) of messenger RNAs (mRNAs). Cis-acting variants within, or close to, a gene are crucial in explaining the variability of gene expression measures. Single nucleotide polymorphisms (SNPs) in the 3′ UTRs of genes can affect the base-pairing between miRNAs and mRNAs, and hence disrupt existing target sites (in the reference sequence) or create novel target sites, suggesting a possible mechanism for cis regulation of gene expression. Moreover, because the alleles of different SNPs within a DNA sequence of limited length tend to be in strong linkage disequilibrium (LD), we hypothesize the variants of miRNA target sites caused by SNPs potentially function as bridges linking the documented cis-SNP markers to the expression of the associated genes. A large-scale analysis was herein performed to test this hypothesis. By systematically integrating multiple latest information sources, we found 21 significant gene-level SNP-involved miRNA-mediated post-transcriptional regulation modules (SNP-MPRMs) in the form of SNP-miRNA-mRNA triplets in lymphocyte cell lines for the CEU and YRI populations. Among the cognate genes, six including ALG8, DGKE, GNA12, KLF11, LRPAP1, and MMAB are related to multiple genetic diseases such as depressive disorder and Type-II diabetes. Furthermore, we found that ∼35% of the documented transcript intensity-related cis-SNPs (∼950) in a recent publication are identical to, or in significant linkage disequilibrium (LD) (p<0.01) with, one or multiple SNPs located in miRNA target sites. Based on these associations (or identities), 69 significant exon-level SNP-MPRMs and 12 disease genes were further determined for two populations. These results provide concrete in silico evidence for the proposed hypothesis. The discovered modules warrant additional follow-up in independent laboratory studies

    Malignant inflammation in cutaneous T-cell lymphoma: a hostile takeover

    Get PDF
    Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    • …
    corecore