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Inherited causes of clonal haematopoiesis in 
97,691 whole genomes

Age is the dominant risk factor for most chronic human diseases, but the  
mechanisms through which ageing confers this risk are largely unknown1. The 
age-related acquisition of somatic mutations that lead to clonal expansion in 
regenerating haematopoietic stem cell populations has recently been associated  
with both haematological cancer2–4 and coronary heart disease5—this phenomenon 
is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous 
analyses of germline and somatic whole-genome sequences provide the opportunity 
to identify root causes of CHIP. Here we analyse high-coverage whole-genome 
sequences from 97,691 participants of diverse ancestries in the National Heart,  
Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) 
programme, and identify 4,229 individuals with CHIP. We identify associations with 
blood cell, lipid and inflammatory traits that are specific to different CHIP driver 
genes. Association of a genome-wide set of germline genetic variants enabled the 
identification of three genetic loci associated with CHIP status, including one locus at 
TET2 that was specific to individuals of African ancestry. In silico-informed in vitro 
evaluation of the TET2 germline locus enabled the identification of a causal variant 
that disrupts a TET2 distal enhancer, resulting in increased self-renewal of 
haematopoietic stem cells. Overall, we observe that germline genetic variation 
shapes haematopoietic stem cell function, leading to CHIP through mechanisms that 
are specific to clonal haematopoiesis as well as shared mechanisms that lead to 
somatic mutations across tissues.

The US National Heart, Lung, and Blood Institute (NHLBI) TOPMed 
project seeks to use high-coverage (>35×) whole-genome sequencing 
(WGS) and molecular profiling to improve the fundamental under-
standing of heart, lung, blood and sleep disorders7. Within the TOPMed 
programme, we designed a study to detect CHIP from WGS of blood 
DNA in 97,691 individuals across 51 largely observational epidemiologi-
cal studies to discover the inherited genetic causes and phenotypic 
consequences of CHIP (Supplementary Table 1).

To confidently identify somatic mutations in blood-derived DNA, we 
applied a somatic variant caller8 to TOPMed WGS data. We identified 
CHIP carriers on the basis of a pre-specified list of leukaemogenic driver 
mutations5 (see Methods, Supplementary Table 2).

In total, we identified 4,938 CHIP mutations in 4,229 individuals 
(Supplementary Table 3). The median variant allele fraction (VAF) of the 
observed CHIP mutations was 16%. Consistent with previous reports, 
more than 75% of these CHIP mutations were in one of three genes, 
DNMT3A, TET2 and ASXL1. Approximately 15% of these CHIP muta-
tions were in the five next most frequent genes (PPM1D, JAK2, SF3B1, 
SRSF2 and TP53) (Fig. 1). Among these eight genes, there was marked 
heterogeneity in the clonal fraction. For example, the DNMT3A and TET2 
CHIP clonal fractions of the peripheral blood were about 25% smaller 
(P = 1.3 × 10−15) and about 14% smaller (P = 2.1 × 10−4), respectively, than 
the ASXL1 clonal fraction, implicating the presence of driver mutation 
gene-specific differences in clonal selection (Extended Data Fig. 1a). 
Ninety percent of individuals with CHIP driver mutations had only one 
identified mutation (Extended Data Fig. 1b).

Phenotypic associations with CHIP
CHIP prevalence was strongly correlated with age at the time of blood 
drawing (P < 10−300, Fig. 1b). CHIP prevalence was highly consistent 
across studies and resembled those found in previous reports2–4 
using whole-exome sequencing (Extended Data Fig. 1c, d). Consist-
ent with previous studies, a history of smoking was associated with 
increased probability of CHIP (odds ratio (OR) = 1.18, P = 5 × 10−5) 
whereas Hispanic and East Asian ancestry were both associated with 
reduced probability of CHIP (OR = 0.50, P = 0.008 and OR = 0.56, 
P = 0.001, respectively), after adjusting for age (Supplementary 
Table 4).

Carriers of frameshift CHIP mutations had a higher mean age than 
carriers of single-nucleotide CHIP mutations (Wilcoxon rank sum 
test, P = 0.01). Similarly, in the subset of individuals with ASXL1 CHIP 
mutations, which are exclusively loss-of-function single-nucleotide 
stop-gain or frameshift mutations, individuals with ASXL1 frameshift 
mutations were older on average (Wilcoxon rank sum test: P = 0.009, 
Extended Data Fig. 2a).

Carriers of JAK2 CHIP mutations had the lowest mean age among CHIP 
mutation carriers. Relative to JAK2, ASXL1 and TET2 carriers were 3.3 
(P = 0.01) and 3.9 (P = 9.1 × 10−4) years older, respectively, and PPM1D, 
SF3B1 and SRSF2 carriers were 5.0 (P = 5.7 × 10−4), 6.9 (P = 1.8 × 10−6) and 
7.7 (P = 1.3 × 10−4) years older, respectively (Extended Data Fig. 2b).

To evaluate the overlap between CHIP and large-scale mosaic chro-
mosomal rearrangements9, we evaluated a subset of 855 samples with 
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both WGS and array genotyping data. The two somatic events did not 
co-occur more than expected by chance (hypergeometric P = 0.25, 
Extended Data Fig. 2c).

CHIP is distinguished from other clonal haematological disorders 
on the basis of the absence of cytopenia, dysplasia and neoplasia6. We 
observed a modest increase in total white blood cell count (P = 1.1 × 10−5) 
and a modest decrease in haemoglobin (P = 0.04) among patients with 
CHIP mutations compared to those without such mutations (Extended 
Data Fig. 3a, Supplementary Table 5). In aggregate, CHIP driver muta-
tions were associated with increased red blood cell distribution width 
(RDW) (P = 3.0 × 10−5), consistent with previous observations2. Nota-
bly, RDW is a haematological parameter that increases with age and 
predicts overall mortality and poor clinical outcomes in the setting 
of cardiovascular disease and in older adults10.

Given the previous association of CHIP with atherosclerotic car-
diovascular disease5,11, we investigated whether CHIP carriers had 
altered lipid profiles. Consistent with previous reports5, we observed 
negative correlations of JAK2 CHIP-carrier status with total cholesterol 
(P = 5.1 × 10−4) and LDL cholesterol (P = 0.0014), but no other significant 
associations (Extended Data Fig. 3b, Supplementary Table 6).

We characterized the inflammatory profile of CHIP carriers (Extended 
Data Fig. 3c, Supplementary Table 7). In aggregate, CHIP was associated 
with an increased level of interleukin 6 (IL-6) (P = 0.0035). There was 
no association of CHIP with quantitative C-reactive protein (CRP), and 
elevated CRP did not reliably identify carriers of CHIP (area under the 
curve = 0.55; for cut-off of CRP > 2 mg l−1, positive predictive value = 6.3%, 
sensitivity = 60%). Driver-gene-specific analyses highlighted the asso-
ciation of TET2 CHIP with increased IL-1β (P = 2.4 × 10−4), whereas JAK2 
and SF3B1 were associated with increased circulating IL-18 (P = 1.3 × 10−4 
and 1.27 × 10−20, respectively).

To identify underlying determinants of the somatic mutational spec-
trum, we performed COSMIC mutational signature analysis12 on pas-
senger somatic mutations identified in CHIP carriers and non-carriers 
(see Methods). Among CHIP carriers, we observed enrichment of signa-
ture 4, which has been associated with smoking, and signature 6, which 
has been associated with defective DNA mismatch repair (Extended 
Data Fig. 4).

Germline genetic determinants of CHIP
Previous genome-wide association analyses in individuals of European 
ancestry have identified germline genetic variants at the TERT locus 
as predisposing to clonal haematopoiesis, defined either by somatic 
mosaicism of single-nucleotide variants (SNVs) and indels13 or by 
large-scale chromosomal rearrangements9. Given the distinct associa-
tion of clonal haematopoiesis with known leukaemogenic mutations 
(that is, CHIP) with both cancer2,14,15 and atherosclerotic cardiovascular 
disease5,11, we sought to discover germline genetic variations that con-
fer increased risk of CHIP acquisition. We performed a single-variant 
genome-wide association analysis in a subset of 65,405 individuals 
(3,831 CHIP cases) in which the likelihood of having a CHIP mutation 
was higher than 1% (see Methods). The trait heritability explained by 
the analysis with linkage disequilibrium score regression was 3.6%.

Our WGS-based association analysis of CHIP replicated the lead 
variant of the single locus previously associated at genome-wide 
significance with clonal haematopoiesis13 (defined on the basis of 
somatic mosaicism of SNVs and indels), rs34002450 (OR 1.2, P = 2.0 × 
10−13). rs34002450 is in strong linkage disequilibrium (r2 = 0.55) with 
rs7705526, our lead variant at this locus and a common variant (minor 
allele frequency (MAF) = 0.29) in the fifth intron of TERT, which encodes 
telomere enzyme reverse transcriptase. In TOPMed, carriers of the 
rs34002450-A (minor) allele have a 1.3-fold increased risk of develop-
ing CHIP (P = 8.4 × 10−24). This variant was previously associated with 
increased leukocyte telomere length16, myeloproliferative neoplasms17 
(MPNs) and clonal chromosomal mosaicism9. In a phenome-wide 

association analysis (PheWAS) of rs34002450-A in UK Biobank, we 
identified a significantly increased risk of MPNs (P = 2.6 × 10−13), uterine 
leiomyoma (P = 3.2 × 10−9) and brain cancer (P = 3.6 × 10−8).

We performed a conditional analysis at the TERT locus, and identi-
fied a second intronic TERT variant, rs13167280 (MAF = 0.11, r2 = 0.2 
with rs7705526) that independently associates with CHIP status (OR 
1.3, P = 6.1 × 10−10; conditional OR 1.1, P = 4.7 × 10−4).

In the TOPMed single-variant association analysis, we additionally 
identified two other novel genome-wide-significant genetic loci, includ-
ing one locus on chromosome 3 in an intergenic region spanning KPNA4 
and TRIM59 and one locus on chromosome 4 near TET2 (Fig. 2, Extended 
Data Fig. 5, Supplementary Table 8).

rs1210060191 is a common variant (MAF 0.54) in a locus with an asso-
ciation signal that spans a 300-kb region that includes KPNA4, TRIM59, 
IFT80 and SMC4. The lead variant is a 1-base pair (bp) intronic deletion 
in TRIM59. Carriers of the del(T) allele have a 1.16-fold increased risk of 
CHIP (P = 5.3 × 10−10). Variants in linkage disequilibrium with this variant 
have been identified as associated with MPNs17. No other significant 
phenotypic associations were noted in UK Biobank PheWAS analyses.

rs144418061 is a variant specific to samples from individuals with 
African ancestry (MAF = 0.035 in African ancestry samples, not present 
in non-African ancestry samples) in an intergenic region near TET2. Car-
riers of the A allele have a 2.4-fold increased risk of CHIP (P = 4.0 × 10−9). 
We replicated this association in an additional set of 570 TOPMed CHIP 
cases and 8,819 TOPMed controls (OR 2.1, P = 0.026). The association is 
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Fig. 1 | Identifying CHIP in TOPMed genomes. a, CHIP was identified in 97,631 
peripheral blood WGS samples through the curation of somatic driver 
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equally robust for DNMT3A CHIP, TET2 CHIP and ASXL1 CHIP, suggesting 
that the germline variant does not specifically predispose individuals 
to TET2 CHIP. Although other variants in the vicinity of TET2 have been 
associated with MPNs17, to our knowledge, this variant has not previ-
ously been identified as associated with any traits, probably owing to 
the underrepresentation of genomes with African ancestry in published 
association studies.

We considered whether there might be germline variants that pre-
dispose to specific CHIP driver mutations by separately performing a 
genome-wide association study (GWAS) on samples with DNMT3A- and 
TET2-associated CHIP. We identified a single novel locus for DNMT3A 
chip at rs2887399 in an intron of the T-cell leukaemia/lymphoma 1A gene 
(TCL1A). Carriers of the T allele (MAF 0.26) are at 1.23-fold risk of acquiring 
a DNMT3A CHIP mutation (P = 3.9 × 10−9). Of note, carriers of the T allele are 
at decreased risk of acquiring a TET2 CHIP mutation (OR 0.82, P = 0.0012), 
and consequently it was not identified in the primary CHIP GWAS analysis. 
This variant is also associated with mosaic loss of chromosome Y18.

We evaluated whether the associations between germline loci and 
CHIP clones were robust across the size spectrum of CHIP clones, using 
the association between the JAK2 46/1 haplotype (tagged by rs1327494) 
and JAK2 CHIP19. We found that rs1327494 associates with JAK2 CHIP 
across VAF thresholds. We evaluated whether this observation general-
ized beyond JAK2 CHIP to encompass all CHIP mutations. We found that 
the TERT locus (tagged by rs7705526) is associated with CHIP mutations 
across all VAF thresholds (Supplementary Table 9). These observations 
imply that our genetic associations are not dependent on clone size 
being detectable by deep-coverage WGS.

As single-variant analyses have limited power to detect rare-variant 
associations, we next performed several types of variant-aggregation 
association tests. First, we performed a transcriptome-wide associa-
tion analysis to quantify the relationship between changes in gene 
expression and genetic predisposition to CHIP20 (see Methods). This 
approach identified the KPNA4–TRIM59 locus on chromosome 3 and six 
additional loci: AHRR, ASL, KREMN2, LEAP2, JSRP1 and RASEF (Extended 
Data Figs. 6, 7). AHRR directs haematopoietic progenitor cell expansion 
and differentiation21.

We also performed gene-based association tests for aggregations 
of rare (MAF < 0.1%) putative loss-of-function germline variants within 
genes for CHIP. Although no genes reached exome-wide significance, 
the top associated gene was the DNA damage repair gene CHEK2 (OR 
1.7, P = 1.3 × 10−5; Supplementary Table 10). Rare germline variants 
in CHEK2 are implicated in a diverse set of haematological and solid 
tumour malignancies22,23. Common variants in CHEK2 are associated 
with MPNs19, and a low-frequency frameshift CHEK2 variant is associated 
with somatic chromosomal mosaicism9. In recent experimental work, 
suppression of CHEK2 in human cord blood Lin−CD34+ cells increased 
cellular proliferation in long-term culture17. These results suggest that 
whereas CHEK2 may ordinarily limit haematopoietic stem cell expan-
sion, loss of CHEK2 function may promote self-renewal, increasing 
the risk of CHIP.

We next sought to determine whether rare variants in noncoding 
regions associate with CHIP acquisition (see Methods). One set of vari-
ants in HAPLN1 enhancers was associated with CHIP acquisition (OR 
6.8, P = 1.96 × 10−5; Supplementary Table 11). HAPLN1 is an extracellular 
matrix protein that is produced in bone marrow stromal cells and has 
previously been implicated in NF-κB signalling24.

We also tested whether germline genetic variants were associated with 
CHIP clone size, but found that no single variant or aggregated rare vari-
ants exceeded Bonferroni significance (Supplementary Tables 12, 13).

Characterization of the TET2 CHIP risk locus
Finally, we bioinformatically and experimentally characterized the 
mechanism by which the noncoding variant at the TET2 locus spe-
cifically identified in individuals of African ancestry influenced risk of 

CHIP. First, iterative conditional analyses at the locus suggested that 
there was most probably only a single causal variant. Fine mapping 
prioritized 25 variants in the credible set (greater than 99% posterior 
probability), none of which overlaps the coding sequence or promoter 
of a protein-coding gene.

We hypothesized that the causal variant affects an enhancer of TET2 in 
haematopoietic stem cells, because heterozygous Tet2 knockout in mice 
increases the self-renewal of haematopoietic stem cells in vivo25 and 
recapitulates the clonal expansion observed in humans with somatic 
mutations in TET22,5. Accordingly, we used the activity-by-contact (ABC) 
model to predict which noncoding elements act as enhancers in CD34+ 
haematopoietic stem and progenitor cells (HSPCs; see Methods). One 
variant (rs79901204) in this credible set overlapped with an element 
predicted to regulate any gene, and this element was indeed predicted 
to regulate TET2 expression. (Fig. 3a, Supplementary Table 14) The T 
risk allele disrupts a consensus GATA–E-Box motif, probably resulting 
in reduced binding of the activating transcription factors GATA1 and 
GATA2 (Fig. 3b, c).

We then evaluated whether rs79901204 affected TET2 expression 
in vivo in human peripheral blood samples. We used whole-blood 
RNA sequencing (RNA-seq) from 247 African American individuals, 
16 of whom were heterozygous and one of whom was homozygous for 
rs79901204. In these samples, the T risk allele led to a dose-dependent 
decrease in whole-blood TET2 expression (Fig. 3d; β = −0.27 ± 0.11, 
mean ± s.e.m.; two-sided linear mixed model P = 0.012). Therefore, 
we sought to test our hypothesis that the rs79901204 risk allele acts to 
decrease the activity of this TET2 enhancer and that decreased enhancer 
activity reduces expression of TET2 in vitro.

To test whether rs79901204 affects enhancer activity, we tested a 
600-bp region containing the regulatory element using a plasmid-based 
luciferase enhancer assay in haematopoietic cells. The reference 
sequence activated luciferase expression by 118-fold versus control 
constructs with no enhancer sequence, whereas the T risk allele acti-
vated expression by only 27-fold (two-sided t-test P = 0.007; Fig. 3e).

To test whether deletion of this enhancer would alter TET2 gene 
expression, we performed deletion of the enhancer element in CD34+ 
HSPCs using a pair of CRISPR–Cas9 guides introduced as ribonu-
cleoproteins, which resulted in decreased TET2 expression after 48 h 
(Fig. 3f).
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We then sought to establish the effect of decreased TET2 expres-
sion on HSPC expansion using a colony-forming unit cellular assay. 
Human HSPCs were electroporated with Cas9 targeting a coding region 
of TET2 and AAVS1 (a control locus) and plated for primary and sec-
ondary colony-forming assays (Fig. 3g). To establish a dose-response 
relationship, we used two TET2 guides with differential editing effi-
ciency (Fig. 3h, Extended Data Fig. 8). Disruption of TET2 resulted in 
expanded secondary colony formation compared with AAVS1 controls, 
with greater expansion identified in the TET2 guide with greater editing 
efficiency (Fig. 3i). These results demonstrate that reduction of TET2 
activity promotes self-renewal and proliferation of HSPCs, illustrating 
how, at this locus, both germline noncoding and somatic coding vari-
ation converge to affect TET2 and influence the development of CHIP.

Given the established role of TET2 in DNA demethylation and our 
finding that rs79901204 is associated with decreased TET2 expression 
(Fig. 3d), we hypothesized that carriers of the rs79901204 T allele might 
have altered peripheral blood methylation profiles. We performed a 
methylation quantitative trait locus (QTL) analysis of 1,747 African 
Americans, and identified 597 genes across the genome with differen-
tially methylated CpG loci associated with rs79901204 T carrier status. 
The most strongly differentially methylated sites were at the TET2 locus 
itself (Extended Data Fig. 9, Supplementary Table 15).

Our observations lead to several conclusions. First, our sample 
size, which is nearly an order of magnitude larger than previous CHIP 
analyses2,3,13, enables refinement of CHIP phenotype associations 
at the level of CHIP driver genes. We find that there is considerable 
driver-gene-dependent heterogeneity across CHIP phenotypes. For 
example, IL-1β and IL-18 are both activated through the inflammasome 

and increase IL-6 production. However, whereas TET2 CHIP is associ-
ated with increased levels of IL-1β, JAK2 and SF3B1 CHIP are associated 
with increased IL-18 levels.

Second, our work highlights multiple mechanisms through which 
germline genetic variation can shape somatic variation in haematopoi-
etic stem cells. One set of the germline loci is associated with increased 
propensity to acquire mutations owing to the failure of genes that main-
tain genome integrity (for example, TERT and CHEK2) and which have 
been implicated in stem cell maintenance or self-renewal17. These loci are 
associated with acquisition of somatic mutations resulting in neoplasm 
in multiple tissues. Other germline loci are associated with increased 
haematopoietic stem cell self-renewal (for example, TET2). Whereas the 
TET2 locus is associated with increased risk of acquiring any CHIP driver 
mutations, it is not associated with cancer outside of the haematopoietic 
stem cell compartment. A third set of germline loci is associated with the 
acquisition of CHIP mutations in specific driver genes. This has previously 
been described in the JAK2 46/1 haplotype leading to JAK2 p.V617F via a 
cis-haplotype effect26–28. We now identify a distinct DNMT3A CHIP-specific 
locus at the TCL1A promoter that is specifically associated with increased 
risk of DNMT3A CHIP, but not other CHIP subsets.

Thus, we have identified a convergence of common and rare germline 
genetic predisposition to leukocyte telomere length, MPNs, large-scale 
somatic chromosomal mosaicism and CHIP, suggesting shared causal 
mechanisms. So far, only CHIP with leukaemogenic driver mutations (as 
opposed to somatic chromosomal mosaicism9 or CHIP with unknown 
driver mutations13) has been robustly associated with non-oncological 
diseases independently of age. The partially overlapping genetic predis-
position that we observe across these three clonal phenomena suggests 
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and 1 for 0, 1 and 2 rs79901204 alternate alleles, respectively; two-sided linear 
mixed model, P = 0.012). Box plot displays median (centre line), 25th and 75th 
percentiles (box edges), mean (diamond) and outliers (black dots). TPM, 
transcripts per million. e, Luciferase assay in CD34+ primary cells demonstrates 
fourfold attenuation of enhancer activity by the rs79901204 T risk allele 
relative to the A reference allele (n = 3; two-sided t-test, P = 0.007). MinP, 

vector-only control. f, Deleting the TET2 enhancer (Enh) in CD34+ primary cells 
results in decreased TET2 expression relative to deletion of the control locus 
AAVS1 (n = 3; two-sided t-test, P = 0.04). g, Human HSPCs were electroporated 
with Cas9 targeting a coding region of TET2 and AAVS1 (control locus)  
and plated for primary and secondary colony-forming assays. RNP, 
ribonucleoprotein; sgRNA, single guide RNA. h, Two TET2 guides (g1 and g2) 
had differential editing efficiency. i, Coding-disrupted TET2 leads to expanded 
secondary colony formation compared with AAVS1 controls (n = 3; two-sided 
t-test, P = 0.01 (g1), P = 0.002 (g2)) with greater expansion identified in the TET2 
guide with greater editing efficiency (two-sided t-test, P = 0.04). Data are 
mean ± s.d. of number of each colony type. BFU-E, burst forming 
unit-erythroid; CFU-G, colony forming unit-granulocyte; CFU-GEMM, 
granulocyte erythrocyte macrophage megakaryocyte; CFU-GM, granulocyte 
macrophage; CFU-M, macrophage. In e, f, h, points represent independent 
replicates, bars show mean and error bars represent s.e.m.
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that although there may be similar genetic architectures that predis-
pose individuals to acquiring a somatic mutation, the specific change 
may be particularly relevant to atherosclerotic disease as opposed to 
the general phenomenon of clonal haematopoiesis itself.

Third, our work underscores the benefits of studying genomes from 
individuals of diverse ancestries. The inclusion of a large number of 
samples from individuals with African ancestry in TOPMed permitted 
the discovery of the TET2 locus, which was not present in samples from 
individuals of other ancestries. Further inclusion of diverse individuals 
in genomic analyses will probably highlight other biological pathways.

Important limitations of our study include the reduced sensitivity 
for detecting CHIP with low allele fractions (VAF of 2–5%), even with 
high-coverage WGS. Ultrasensitive targeted sequencing can facilitate 
detection of such leukaemogenic mutations at exceedingly low VAFs, 
but the clinical consequences of this much more pervasive phenom-
enon, as well as determinants of progression to CHIP, are not well under-
stood currently29. Furthermore, the cross-sectional analyses of CHIP 
with non-genetic risk factors and biomarkers limit conclusions regard-
ing temporal relationships between CHIP and these features; however, 
these observations still permit risk prediction for CHIP presence. Nota-
bly, inflammatory biomarker analyses are concordant with previous 
observations indicating increased levels of inflammatory biomarkers 
as a consequence of CHIP in previous model experiments2,5. Finally, 
given the age dependence of CHIP, many individuals not observed to 
have CHIP in this study are likely to develop CHIP in future.

Overall, comprehensive simultaneous germline and somatic analyses of 
blood-derived WGS data demonstrate that germline variation influences 
the acquisition of somatic mutations in blood cells. We anticipate that the 
TOPMed CHIP dataset defined here will be a valuable tool for establish-
ing associations of CHIP with diverse heart, lung, blood and sleep traits.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Study samples
WGS was performed on 97,691 samples sequenced as part of 51 studies 
contributing to the NHLBI TOPMed research programme Freeze 6 
release as previously described for discovery analyses7. An additional 
distinct set of 9,389 WGS samples from the NHLBI TOPMed Freeze 
8 release were used for replicating the TET2 genetic association. 
Study designs include prospective cohorts, families, population 
isolates and case-only collections. A subset of the studies focus on 
heart (~40%) or lung (~30%) phenotypes, with the remainder repre-
senting prospective population cohorts or electronic health record 
linked cohorts that have been assessed for many diverse phenotypes. 
None of the studies that comprise TOPMed selected individuals for 
sequencing on the basis of haematological malignancy. Approxi-
mately 82% of participants are US residents with diverse ancestry and 
ethnicity (40% European, 32% African, 16% Hispanic or Latino and 10% 
Asian). Each of the constituent studies provided informed consent 
for the participating samples. Details on participating cohorts and 
samples is provided in Supplementary Table 1. The age of participants 
at time of blood draw was obtained for a subset comprising 82,807 
of the samples. The median age was 55, the mean age was 52.5, and 
the maximum age was 98. The age distribution varied across the 
constituent cohorts.

Written informed consent was obtained from all human participants 
by each of the studies that contributed to TOPMed with approval of 
study protocols by ethics committees at participating institutions, as 
summarized in Supplementary Table 1. Each study received institu-
tional certification before deposition in dbGaP, which certified that 
all relevant institutional ethics committees approved the individual 
studies and that the genomic and phenotypic data submission was 
compliant with all relevant ethical regulations. This certification was 
deposited in dbGaP along with the data. Secondary analysis of the 
TOPMed dbGaP data as described in this manuscript was approved by 
the Partners Healthcare Institutional Review Board. All relevant ethics 
committees approved this study and this work is compliant with all 
relevant ethical regulations.

WGS processing, variant calling and CHIP annotation
BAM files were remapped and harmonized through a previously 
described unified protocol30. Single nucleotide polymorphisms (SNPs) 
and short indels were jointly discovered and genotyped across the 
TOPMed samples using the GotCloud pipeline31. An SVM filter was 
trained to discriminate between true variants and low-quality sites. 
Sample quality was assessed through pedigree errors, contamina-
tion estimates and concordance between self-reported sex and 
genotype-inferred sex. Variants were annotated using snpEff 4.3.

Putative somatic SNPs and short indels were called with GATK 
Mutect28 (https://software.broadinstitute.org/gatk). In brief, Mutect2 
searches for sites where there is evidence for variation and then per-
forms local reassembly. It uses an external reference of recurrent 
sequencing artefacts termed a ‘panel of normal samples’ to filter out 
these sites, and calls variants at sites where there is evidence for somatic 
variation. The panel of normal samples used for our study included 100 
randomly selected individuals under the age of 40 years. Absence of 
a hotspot CHIP mutation was verified before inclusion in the panel of 
normal set. An external reference of germline variants32 was provided to 
filter out likely germline calls. We deployed this variant calling process 
on Google Cloud using Cromwell (https://github.com/broadinstitute/
cromwell). The caller was run individually for each sample with the 

same settings. The Cromwell WDL configuration file is available from 
the authors upon request.

Samples were annotated as having CHIP if the Mutect2 output con-
tained one or more of a pre-specified list of putative CHIP variants as 
previously described2,5 (Supplementary Table 2) at a VAF >2%.

WGS sensitivity to detect CHIP
To empirically demonstrate the sensitivity of CHIP detection and VAF, 
we reanalysed sequence data from 30 samples with CHIP from a previ-
ously published cohort33. These samples were sequenced to >400x 
depth. We bioinformatically down-sampled the reads to the range 
of sequencing depths compatible with whole exome and WGS. The 
TOPMed WGS samples were sequenced to a median depth of ~40x, 
although sequencing of any particular region was typically 30x–50x. 
Across this range of sequencing depths we observe robust ability to call 
CHIP with VAF >10%, which is the most clinically actionable subset of 
CHIP. We also capture approximately half of the CHIP calls in the VAF 
5–10% range. To reliably capture CHIP in the 5–10% range requires ~100x 
sequencing depth commonly done in whole-exome sequencing, but 
even at this sequencing depth the majority of the VAF 2–5% CHIP calls 
are not reliably detected (Extended Data Fig. 10).

Amplicon sequencing validation
To evaluate the fidelity of our TOPMed WGS CHIP dataset, we performed 
technical validation of 76 CHIP mutations in 72 samples using targeted 
deep sequencing. All 76 of 76 CHIP mutations identified with WGS were 
also identified with targeted deep sequencing. CHIP mutations were 
validated by single-molecule molecular inversion probe sequencing 
(smMIPS)34. Capture probes were designed to tile all coding exons (±5 
bp) for 12 of the mostly highly prevalent CHIP genes plus four recurrent 
mutation hotspots, totalling 44.5 kb. Probes were synthesized as a pool 
by CustomArray, amplified using Q5 DNA polymerase (NEB) using outer 
flanking primers, and digested with BbsI-HF (NEB) to remove adap-
tors. For each sample, captures were performed with 500 ng genomic 
DNA and converted to dual-barcoded Illumina sequencing libraries as 
described35. Sequence capture libraries were pooled for paired-end 
150 bp sequencing on a Hiseq 4000 lane. Resulting reads were aligned 
with bwa mem and processed using the mimips pipeline (source code 
at https://github.com/kitzmanlab/mimips) to trim capture probe 
sequences, and to remove reads with duplicated unique molecular 
identifiers. Somatic variants were called by MuTect2 as described above 
and confirmed by manual inspection with IGV.

Somatic chromosomal mosaic detection
In order to assess the relationship between CHIP and clonal mosaicism 
reflecting chromosomal mutation, we sought to characterize large 
(megabase-scale) acquired chromosomal alterations leading to allelic 
imbalance using existing SNP array data on a subset of the samples in 
this analysis. To do so, we compared statistically reconstructed haplo-
types (using MaCH36) with the patterns of ‘B allele’ frequencies (BAFs), 
measured via SNP array. Regions of nonrandom similarities between 
the estimated haplotypes and BAFs were detected with hapLOH37, and 
indicate acquired chromosomal alterations. We identified genomic 
allelic imbalance events using a threshold of a posterior probability 
for allelic imbalance >0.8 and event size >1 Mb. We excluded allelic 
imbalance events with fewer than ten markers and removed potential 
germline duplications if a detected event exhibited the following: (1) 
50% reciprocal overlap with the database of genomic variants and (2) 
was not determined to be a deletion or Log-R ratio deviations >0.08, 
size <5Mb and BAF deviations >0.1. Phasing and event detection was 
performed in SyQADA38.

Blood traits
Conventionally measured blood cell counts and indices were selected 
for analysis including: haemoglobin, haematocrit, red blood cell count, 
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white blood cell count, basophil count, eosinophil count, neutrophil 
count, lymphocyte count, monocyte count, platelet count, mean cor-
puscular haemoglobin, mean corpuscular haemoglobin concentration, 
mean corpuscular volume, mean platelet volume and red cell distribu-
tion width. Phenotypes were collected by each cohort, centrally har-
monized by the TOPMed Data Coordinating Center (DCC). Additional 
documentation about harmonization algorithms for each specific 
trait is available from the TOPMed DCC and accompanies the data on 
the dbGaP TOPMed Exchange area. Up to 37,653 individuals from 10 
cohorts where used for this analysis that had one or more blood traits 
measured concurrently or following the blood draw used for CHIP 
ascertainment. Traits were first log2 normalized and then analysed using 
a general linear regression model with CHIP status, age, sex, study and 
the first ten ancestry principal components as covariates.

Lipid phenotypes
Conventionally measured plasma lipids, including total cholesterol, 
LDL-C, HDL-C and triglycerides, were included for analysis. LDL-C was 
either calculated by the Friedewald equation when triglycerides were 
<400 mg dl−1 or directly measured. Given the average effect of statins, 
when statins were present, total cholesterol was adjusted by dividing by 
0.8 and LDL-C by dividing by 0.7. Triglycerides were natural log trans-
formed for analysis. Phenotypes were harmonized by each cohort and 
deposited into dbGaP TOPMed Exchange area as previously described39. 
Up to 28,310 individuals from 19 cohorts where used for this analysis 
that had one or more lipid trait measured concurrently or following 
the blood draw used for CHIP ascertainment. Lipid traits were first 
normalized for age, sex and ancestry principal components and then 
analysed using a general linear regression model with CHIP status, age, 
sex, study and the first 10 ancestry principal components as covariates.

Inflammatory markers
A set of makers previously implicated in mediating cardiometabolic dis-
ease were analysed including: CD-40, CRP, E-Selectin, ICAM-1, IL-1β, IL-6, 
IL-10, IL-18, 8-epi PGF2a, Lp-PLA2 mass and activity, MCP1, MMP9, MPO, 
OPG, P-selectin, TNF, TNF receptor 1 and TNF receptor 2. Phenotypes 
were collected by each cohort, centrally harmonized by the TOPMed 
DCC and then deposited into dbGaP TOPMed Exchange area. Additional 
documentation about harmonization algorithms for each specific trait 
is available from the TOPMed DCC and accompanies the data on dbGaP. 
Up to 22,092 individuals from 10 cohorts were used for this analysis 
that had one or more inflammatory marker measured concurrently or 
following the blood draw used for CHIP ascertainment. Inflammatory 
markers were first normalized using a log2(x+1) transformation and then 
analysed using a general linear regression model with CHIP status, age, 
sex, study and the first 10 ancestry principal components as covariates.

Mutational signatures
We identified all putatively somatic singleton mutations in a subset of 
the TOPMed samples that included 3,764 cases with a single CHIP driver 
mutation and a randomly sampled set of 5,000 controls. Variants were 
filtered to ensure a depth ≥25 reads, a VAF <35% and no overlap with 
the germline variant site list from TOPMed Freeze 5 (https://bravo.
sph.umich.edu/freeze5/hg38/). Multiallelic variants and indels were 
excluded. We used the COSMIC signature file (https://cancer.sanger.
ac.uk/cosmic/signatures_v2) as a reference for mutation signatures 
and the MutationalPatterns R package to estimate the contributions 
of the signatures12,40,41. We defined a signature as being ‘differentially 
observed’ if at least 99% of its observations are in CHIP cases, or if at 
most 1% of its observations are in cases (that is, one of cases or controls 
contains at least 99% of the signature observations).

Single variant association
Single variant association for each variant with MAF >0.1% and MAC 
>20 was performed with SAIGE42, and analysis was performed using the 

TOPMed Encore analysis server (https://encore.sph.umich.edu). CHIP 
driver status was dichotomized into a case-control phenotype based 
on the presence of at least one driver mutation. Prior to running single 
variant association tests, a logistic mixed model was fit using the lme4 
R package43 to estimate the probability of the CHIP case control status 
conditional on a spline transformation of the centred age, genotype 
inferred sex and cohort. The cohort was included as a random intercept 
which represents study specific contributions to the log-odds of CHIP 
at the mean sample age. Age was modelled with a spline to capture the 
nonlinearity of the relationship between age and CHIP. This model was 
chosen over comparable models based on its AIC. Combining the age, 
inferred sex, and study into a single quantity aided the convergence of 
SAIGE compared to the inclusion of these terms separately. The first 10 
principal components were also included as covariates.

Given that CHIP is unlikely to manifest in younger individuals, these 
individuals are effectively censored in our analysis set—that is, a young 
individual that does not presently have CHIP may still develop CHIP in the 
future. To avoid the power loss associated with misclassification of con-
trols, we pruned these individuals from our analysis set. The single variant 
association analysis was run on a pruned set of samples that excluded those 
which had less than a 1% probability CHIP as estimated by the aforemen-
tioned model. This excluded 21,712 samples leading to a final analysis set 
of 65,405 which was used for downstream association analyses.

Fine mapping
We applied FINEMAP 1.344 to the summary statistics from SAIGE, 
using the z-score and linkage disequilibrium matrices as input. We 
fine-mapped the TET2 locus using the summary statistics from the 
African ancestry single variant summary statistics and estimated link-
age disequilibrium on the same set of samples using Plink 1.9. We set 
the maximum number of causal SNPs in the region to 10 and used a 
shotgun stochastic search.

Transcriptome-wide association analysis
Multi-tissue gene expression and eQTL data were retrieved from the 
Genotype-Tissue Expression (GTEx) project (https://www.gtexportal.
org). We applied the unified test for molecular signatures (UTMOST)20 
to perform cross-tissue transcriptome-wide association analysis 
for CHIP. We used cross-tissue gene expression imputation models 
trained from 44 tissues in GTEx. Gene-level association meta-analysis 
was performed using the generalized Berk-Jones test implemented 
in UTMOST (https://github.com/Joker-Jerome/UTMOST). Statistical 
significance was determined using a Bonferroni corrected P-value 
cut-off of 2.9 × 10−6.

Rare-variant analyses
Collapsing burden tests were applied to specific variant grouping 
schemes using EPACTS (https://genome.sph.umich.edu/wiki/EPACTS). 
The same covariates as the single variant tests were used on the same 
set of samples. We used burden tests due to their limited compute 
requirements, which were considerable for the number of variants and 
samples tested. Two grouping schemes were specified: the first groups 
coding variation, and the second groups putative regulatory elements 
in a relevant cell line. The first used all putative loss-of-function vari-
ants as identified by snpEff. Given that some variants were present in 
both the Mutect2 calls and the germline variant calls, we pruned the 
loss-of-function variants to exclude variants that were present in both 
call sets. The second grouping scheme used all variants in regions that 
were predicted enhancers for CD34 cells that had CADD scores of at 
least 10. Predicted enhancers were identified by the ABC model45.

Predicting enhancer-gene regulation for TET2
We used the ABC model46 to predict which enhancers regulate specific 
genes in CD34+ haematopoietic progenitor cells, with minor modifica-
tions as follows.
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In brief, this model predicts the effect of each putative regulatory 

element (defined as a DNase peak within 5 Mb of a given promoter) by 
multiplying the activity of each element (estimated from DNase-seq 
and H3K27ac ChIP-seq) by its contact with a target promoter (estimated 
from Hi-C data). The ABC score of a single element on a gene’s expres-
sion is the predicted effect of that element divided by the sum of the 
predicted effects of all elements for a given gene.

We identified putative regulatory elements by using MACS2 to call 
peaks in DNase-seq data from mobilized CD34+ haematopoietic pro-
genitor cells from the Roadmap Epigenome Project (downloaded from 
http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consoli-
dated/E050-DNase.tagAlign.gz) Initially, we considered all peaks with 
P < 0.1. To further refine this list, we kept the 100,000 peaks with the 
highest number of DNase-seq reads. We then resized these peaks to be 
500 bp in length centred on the peak summit, merging any overlap-
ping peaks, and removed any peaks overlapping ENCODE blacklisted 
regions47 (regions of the genome previously observed to accumulate 
anomalous numbers of reads in epigenetic sequencing experiments; 
downloaded from https://sites.google.com/site/anshulkundaje/pro-
jects/blacklists). To this peak list, we added 500-bp regions centred 
on the transcription start site of all genes. Any overlapping regions 
resulting from these additions or extensions were merged.

Within each putative regulatory element, we estimated enhancer 
activity as the geometric mean of read counts from DNase-seq and 
H3K27ac ChIP-seq data from the Roadmap Epigenome Project (https://
egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/
E050-DNase.tagAlign.gz, and https://egg2.wustl.edu/roadmap/data/
byFileType/alignments/consolidated/E050-H3K27ac.tagAlign.gz).

We estimated enhancer-promoter Contact from the Knight–Ruiz 
(KR)-normalized Hi-C contact maps in primary CD34+ cells. We then 
calculated effect of each putative enhancer (E)–gene (G) connection 
by multiplying the activity (A) and contact (C) for that element (e) and 
gene. Dividing the effect of each element by the sum of effects for all 
elements for a given gene yields the ABC score46:

A C
A C

ABC =
×

∑ ×E–G
E E–G

e within 5Mb e e–G

To call predicted enhancer–gene connections, we used a threshold on 
the ABC score of 0.015. The rs79901204 variant overlapped an enhancer 
with ABC score of 0.0308 for TET2, which, based on comparison of ABC 
scores to large-scale enhancer perturbation datasets, corresponds to 
a positive predictive value of approximately 61% (ref. 48).

Functional evaluation of TET2 locus
The genomic region containing risk and non-risk allele of the variant 
rs79901204 (600 bp) was synthesized as gblocks (IDT Technologies) 
and cloned into the Firefly luciferase reporter constructs (pGL4.24) 
using NheI and EcoRV sites. The Firefly constructs (500 ng) were 
co-transfected with pRL-SV40 Renilla luciferase constructs (50 ng) 
into 100,000 K562 cells (ATCC) using Lipofectamine LTX (Invitrogen) 
according to manufacturer’s protocols. Cells were harvested after 48 
h and the luciferase activity measured by Dual-Glo Luciferase Assay 
system (Promega). K562 cell identity was validated using STR analysis. 
Mycoplasma testing was routinely performed on all cells used in the 
study and confirmed to test negative.

CRISPR–Cas9 editing of CD34+ human HSPCs
Editing of TET2 enhancer and TET2 coding regions was performed by 
electroporation of Cas9 ribonucleoprotein complex (RNP) into CD34+ 
human HSPCs. CD34+ HSPCs from adult donors obtained from the 
Fred Hutchinson Cancer Research Center, Seattle, USA were thawed 
24 h before electroporation and cultured in hematopoietic stem 
cell expansion conditions throughout the experiment (Stemspan II 
medium with CC100 cytokine cocktail from Stem Cell Technologies 

and thrombopoietin (50 ng μl−1) and small molecule UM171 (35nM)). 
The RNP complex was made by mixing Cas9 (50 pmol) and modified 
sgRNAs from Synthego (100 pmol in total). HSPCs (3.75 × 10 5) resus-
pended in 20 μl Lonza P3 solution were mixed with RNP and transferred 
to Nucleocuvette strips for electroporation with program DZ-100 
(Lonza 4D Nucleofector). TET2 gene expression was measured at 6 
days post-electroporation.

For enhancer deletion experiments two guides targeting 5′ and 3′ 
ends of the enhancer element were used simultaneously (ENH_sgRNA_1: 
GGATTCTGTATTCGTCTGTG and ENH_sgRNA_2: TCTACTCACAGGG 
CCCAATG). For TET2 coding-disruption experiments single guides 
were used (TET2_CDS1: TGGAGAAAGACGTAACTTCG and TET2_CDS2: 
TCTGCCCTGAGGTATGCGAT). For negative control, a guide targeting 
AAVS1 site was used (GGGGCCACTAGGGACAGGAT). Editing efficiency 
of TET2 CDS and AAVS1 guides were measured by Sanger sequencing 
followed by TIDE analysis. Editing efficiency of TET2 enhancer deletion 
was measured by PCR and agarose gel electrophoresis.

Colony-forming unit cell assays
Three days after RNP electroporation, 500 CD34+ HSPCs were plated 
in 1 ml methylcellulose medium (H4034, Stem Cell Technologies). 
Primary CFU-C colonies were counted after 14 days. For the colony 
replating experiments, 2 weeks after the primary plating, the colo-
nies from 3 pates were pooled, washed with PBS, and the cells were 
plated in new methylcellulose medium at 25,000 cells per ml for an 
additional 2 weeks.

RNA-seq and eQTL analysis
RNA-seq was performed on peripheral blood mononuclear cells from a 
subset of the MESA cohort. Alignment to the GRCh38 reference genome 
was done using STAR 2.5.3a49. Gene Quantification and quality con-
trol was performed using RNA-SeQC 1.1950. For RNA-SeQC, isoforms 
were collapsed into a single transcript per gene using the procedure 
described at https://github.com/broadinstitute/gtex-pipeline/blob/
master/gene_model/. Samples that failed the RNA-Seq QC, fingerprint-
ing or expression-based sex check were filtered out. Further details on 
the RNASeq pipeline are available at https://www.nhlbiwgs.org/sites/
default/files/TOPMed_RNAseq_pipeline_COREyr2.pdf.

Analysis was performed using samples from 247 African Americans 
from the MESA cohort Exam 1. Transcript expression was converted 
to TPM units and log2 transformed for analysis consistent with the 
GTEx consortium51 best practices. Analysis of rs79901204 with TET2 
expression was performed using a linear mixed model adjusting for age 
at blood draw, sex, PC1-10 of population stratification from the WGS 
data, sequencing batch and kinship relatedness matrix.

Genome-wide methylation–QTL analysis of the TET2 risk locus
Illumina Methylation EPIC 850K array data interrogating over 850,000 
CpG DNA methylation sites was generated at the University of Wash-
ington’s Northwest Genomic Center from blood samples collected 
from African Americans at the Jackson Heart Study baseline exam. 
Fluorescent signal intensities were preprocessed with the R package 
minfi52 using normal-exponential out-of-band (noob) background cor-
rection method with dye-bias normalization. Samples (1,747 total: 1,097 
women and 650 men) remained after severe outliers were identified 
and removed. Seventy-one individuals were positive for CHIP and 100 
were carriers of the rs79901204 variant.

Methylation levels at each CpG site were then quantified as β values, 
defined as the ratio of intensities between methylated (M) and unmeth-
ylated (U) signals where β = M/(M + U + 100). Values therefore ranged 
from β = 0 (completely unmethylated) to β = 1 (completely methylated). 
Batch correction for assay plate position was performed on the β values 
using ComBat53. Relative leukocyte cell counts (CD8+ T lymphocytes, 
CD4+ T lymphocytes, natural killer cells, B cells, monocytes and granu-
locytes) were estimated as previously described53,54.

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz
http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-DNase.tagAlign.gz
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-H3K27ac.tagAlign.gz
https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/E050-H3K27ac.tagAlign.gz
https://github.com/broadinstitute/gtex-pipeline/blob/master/gene_model/
https://github.com/broadinstitute/gtex-pipeline/blob/master/gene_model/
https://www.nhlbiwgs.org/sites/default/files/TOPMed_RNAseq_pipeline_COREyr2.pdf
https://www.nhlbiwgs.org/sites/default/files/TOPMed_RNAseq_pipeline_COREyr2.pdf


To investigate methylation in the TET2 locus, a linear mixed effects 
model was fitted using CpGassoc54 in R 3.6.0 with rs79901204 as 
the predictor and the batch-corrected methylation β levels as the 
dependent variable, adjusting for age, sex, estimated cell counts, the 
top 10 principal components of genetic ancestry, and CHIP status. A 
Bonferroni-corrected threshold of P = 5.8 × 10−8 was used to establish 
statistical significance.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Individual WGS data for TOPMed whole genomes, individual-level 
harmonized phenotypes, harmonized germline variant call sets, the 
CHIP somatic variant call sets, RNA-seq and peripheral blood methyla-
tion data used in this analysis are available through restricted access 
via the dbGaP. Accession numbers for these datasets are provided 
in Supplementary Table 1. Summary-level genotype data are avail-
able through the BRAVO browser (https://bravo.sph.umich.edu/). Full 
GWAS summary statistics are available for general research use through 
controlled access at dbGaP accession phs001974: NHLBI TOPMed: 
Genomic Summary Results for the Trans-Omics for Precision Medicine 
programme. A subset of the TOPMed cohorts analysed here is based 
on sensitive populations, precluding public sharing of full genomic 
summary results.
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Extended Data Fig. 1 | Characterizing TOPMed CHIP. a, There was marked 
heterogeneity of CHIP clone size as measured by variant allele fraction by CHIP 
driver gene. Violin plot spanning minimum and maximum values calculated on 
full data set (Supplementary Table 3). Sample size for each element in violin 
plot displayed in Fig. 1. b, 90% of individuals with CHIP had only one 
somatic CHIP driver mutation variant identified. c, CHIP prevalence with age 
was highly concordant across sequenced cohorts. CHIP prevalence was 

estimated from a logistic mixed model with spline-transformed age, sex, and 
cohort included as predictors. The cohort was included as a random intercept. 
Sample size for each cohort listed in Supplementary Table 1. d, CHIP prevalence 
with age in this study (blue triangles, n = 82,807) was highly consistent with 
previously observed CHIP prevalence (dots represent mean point prevalence 
with shaded area represents 95% confidence interval; nGenovese = 12,380; 
nJaiswal = 17,182; nXie = 2,728).



Extended Data Fig. 2 | CHIP age association by mutational mechanism, 
gene and overlap with somatic chromosomal mosaicism. a, Cumulative 
density plot of CHIP incidence with age stratified by single nucleotide variant 
(SNV) vs frameshift mutations. SNVs were observed in younger individuals 
than Frameshift mutations (n = 4,939; two-sided Wilcoxon rank sum test 
P = 0.01). b, Cumulative density plot of CHIP incidence with age stratified by 

driver gene. c, 855 elderly WHI individuals (mean age: 70) with both whole 
genome and the array genotyping data available were interrogated for 
large-scale somatic mosaic chromosomal rearrangements. The two somatic 
events did not co-occur more than would be expected by chance 
(hypergeometric P = 0.25).
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Extended Data Fig. 3 | CHIP associates with blood, lipid and inflammatory 
traits. a, CHIP consistently associated with increased RDW. JAK2, SF3B1 and 
SRSF2 showed driver gene specific effects on blood traits (see Supplementary 
Table 5). b, CHIP status was not consistently associated with lipid traits, other 
than JAK2 CHIP which was associated with decreased total cholesterol and a 
trend towards decreased LDL (see Supplementary Table 6). c, CHIP status is 

associated with inflammatory markers, however notable heterogeneity 
existed across CHIP mutations (see Supplementary Table 7). Associations used 
a two-sided t-test from a multivariate general linear model including age, 
smoking, race and gender and study centre and were not adjusted for multiple 
comparisons. Sample sizes and exact p-values for each phenotype are listed in 
Supplementary Tables 5–7.



Extended Data Fig. 4 | CHIP passenger somatic mutation spectrum. a, Singleton mutation counts by nucleotide context in CHIP cases and controls.  
b, Signature contribution in CHIP cases and controls identified differential enrichment.
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Extended Data Fig. 5 | CHIP single variant association regional association plots. a, TERT locus. b, TRIM59–KPNA4 locus. c, TET2 locus. Two-sided association 
testing performed using SAIGE (n = 65,405 individuals, see Methods).



Extended Data Fig. 6 | CHIP transcriptome-wide association study (TWAS) 
results across 48 tissues identified 7 significant loci. UTMOST algorithm 
applied to CHIP genome wide association study results from n = 65,405 

individuals (see Methods). Genomic coordinates listed on x-axis. P value from 
generalized Berk-Jones test on y-axis. Multiple hypothesis corrected threshold, 
P < 2.9 × 10−6 displayed as dotted red line.
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Extended Data Fig. 7 | Tissue-specific results from the top 9 overall 
UTMOST-significant genes. UTMOST algorithm applied to CHIP genome wide 
association study results from n = 65,405 individuals. P value from generalized 

Berk-Jones test. eQTL z-scores for associations with P < 0.05 are displayed in 
each bar. GTEX eQTL tissue listed on y-axis.



Extended Data Fig. 8 | CRISPR–Cas9 editing efficiency of TET2 enhancer 
deletion in primary CD34+ HSPCs. a, Schematic showing the position of the 
two sgRNAs used to delete the TET2 enhancer (512 bp) containing rs79901204. 
b, Gel electrophoresis image of PCR products from genomic DNA of edited 

HSPCs indicating unedited (WT) and deletion bands at sgRNA target site. 
Percentages of deletion alleles determined by band intensity and is shown 
below each lane. The experiment contains 3 biological replicates and was 
performed once.
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Extended Data Fig. 9 | rs79901204 associated with genome wide 
differential methylation signal. Methylation quantitative trait association 
results of rs79901204 variant with CpG methylation probes identify an altered 
peripheral leukocyte methylation profile genome wide in n = 1,747 individuals. 

The strongest signal is at the chr4 TET2 locus. P values on y-axis derived from 
two-sided linear mixed effects model (see Methods). To account for multiple 
hypothesis testing, a Bonferroni threshold of P < 5.8 × 10−8 was used to establish 
statistical significance.



Extended Data Fig. 10 | Sensitivity of CHIP detection at various VAFs across 
sequencing depths. A set of 30 samples from a previously published CHIP 
cohort33 were computationally down sampled to 30x, 40x, 50x, 100x and 400x 
sequencing depth. TOPMed WGS data were typically in the 40x depth range 

across CHIP genes. WGS data have excellent sensitivity to detect CHIP clones 
with VAF > 10%, and ~50% sensitivity to detect CHIP VAF 5–10%, with minimal 
ability to detect CHIP clones <5%.
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Data analysis CHIP Identification: putative somatic SNPs and short indels were called with GATK Mutect2 (https://software.broadinstitute.org/gatk). 
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somatic variant call sets, RNA-Seq and peripheral blood methylation data used in this analysis are available through restricted access via the dbGaP. Accession 
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Sample size As this was a genomic discovery effort, we sought to maximize sample size by aggregating a set of samples that was ~10 larger than all prior 
CHIP analysis efforts. In a post-hoc power calculation, we estimate that we had >80% power to detect variants at a minor allele frequency of 
>5% that confer at least a 1.15 fold genotype relative risk of CHIP. No statistical methods were used to predetermine sample size.

Data exclusions Given that CHIP is unlikely to manifest in younger individuals, these individuals are effectively censored in our analysis set – that is, a young 
individual that does not presently have CHIP may still develop CHIP in the future. To avoid the power loss associated with misclassification of 
controls, we pruned these individuals from our analysis set. The single variant association analysis was run on a pruned set of samples that 
excluded those which had less than a 1% probability CHIP as estimated by the aforementioned model. This threshold was pre-established 
before performing the analysis. This excluded 21,712 samples leading to a final analysis set of 65,405 which was used for downstream 
association analyses.

Replication We replicated the association with CHIP at the top loci (TERT) with prior analysis and replicated the TET2 locus using a second cohort of 
TOPMed samples distinct from our discovery analysis. We found support for all three single variant loci as well as the rare-variant CHEK2 loss 
of function burden signal in the cosubmitted paper on the closely related myeloproliferative neoplasm phenotype (Bao et al).

Randomization Not applicable to genetic association studies.
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Methods
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ChIP-seq
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) K562 cell lines were obtained from ATCC

Authentication Identity validated using STR analysis

Mycoplasma contamination Mycoplasma testing was routinely performed on all cells used in the study, and confirmed to test negative. 

Commonly misidentified lines
(See ICLAC register)

None.

Human research participants
Policy information about studies involving human research participants

Population characteristics Whole genome sequencing (WGS) was performed on 97,691 samples sequenced as part of 51 distinct studies contributing to 
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Population characteristics the NHLBI TOPMed research program as previously described. (https://www.biorxiv.org/content/10.1101/563866v1; 
www.nhlbiwgs.org) Each of the constituent studies used in this analysis provided informed consent on the participating 
samples. Details on participating cohorts and samples is provided in Supplemental Table S1. Each of the studies contributing 
to TOPMed has a distinct study design and scientific focus. Study designs included community based prospective cohorts, 
case-control studies for heart lung, blood and sleep disease, including studies which focused on asthma, COPD, pulmonary 
fibrosis, hypertension, myocardial infarction, coronary artery disease, stroke, vascular disease, venous thromboembolism, 
congenital heart disease, atrial fibrillation, adiposity, blood traits, lipids, sleep traits. A subset of the studies contained 
extended family structures while most contained unrelated individuals. The sequenced individuals were highly diverse 
including ~40% of European ancestry individuals, ~30% of African ancestry individuals, ~ 15% Hispanic/Latino individuals and 
~10% Asian ancestry individuals. Approximately equal proportions of male and female individuals were included. Sequenced 
individuals spanned the spectrum of ages from birth to >100 years old.

Recruitment Recruitment of each of the 51 studies contributing to the data analyzed here has been previously described in detail (https://
www.biorxiv.org/content/10.1101/563866v1; https://www.nhlbiwgs.org/parent-study-descriptions). Each of the studies 
contributing to TOPMed has a distinct study design. The most common study design were community based observational 
epidemiology studies. Recruitment for these most commonly included individuals from a given community who were 
recruited to participate at random (eg Framingham Heart Study) or through community schools/clinics/hospitals (eg Gene-
Environment, Admixture and Latino Asthmatics study); (2) electronic health record/biobank based studies, where individuals 
volunteered for research studies and samples were later selected for sequencing (eg BioME); (3) disease cohort/registry 
based studies where individuals with a specific condition were selected (eg Boston Early-Onset COPD).

Ethics oversight Written informed consent was obtained from all human participants by each of the studies that contributed to TOPMed with 
approval of study protocols by ethics committees at participating institutions. Secondary analysis of the TOPMed data as 
described in this manuscript was approved by the Partners Healthcare Institutional Review Board. All relevant ethics 
committees approved this study and this work is compliant with all relevant ethical regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Inherited causes of clonal haematopoiesis in 97,691 whole genomes
	Recommended Citation
	Authors

	Inherited causes of clonal haematopoiesis in 97,691 whole genomes

	Phenotypic associations with CHIP

	Germline genetic determinants of CHIP

	Characterization of the TET2 CHIP risk locus

	Online content

	Fig. 1 Identifying CHIP in TOPMed genomes.
	﻿Fig. 2 Genetic determinants of CHIP.
	﻿Fig. 3 A TET2 locus risk variant specific to donors with African ancestry disrupts the haematopoietic stem cell TET2 enhancer, decreasing TET2 expression and increasing self-renewal.
	Extended Data Fig. 1 Characterizing TOPMed CHIP.
	Extended Data Fig. 2 CHIP age association by mutational mechanism, gene and overlap with somatic chromosomal mosaicism.
	Extended Data Fig. 3 CHIP associates with blood, lipid and inflammatory traits.
	Extended Data Fig. 4 CHIP passenger somatic mutation spectrum.
	Extended Data Fig. 5 CHIP single variant association regional association plots.
	Extended Data Fig. 6 CHIP transcriptome-wide association study (TWAS) results across 48 tissues identified 7 significant loci.
	Extended Data Fig. 7 Tissue-specific results from the top 9 overall UTMOST-significant genes.
	Extended Data Fig. 8 CRISPR–Cas9 editing efficiency of TET2 enhancer deletion in primary CD34+ HSPCs.
	Extended Data Fig. 9 rs79901204 associated with genome wide differential methylation signal.
	Extended Data Fig. 10 Sensitivity of CHIP detection at various VAFs across sequencing depths.


