3,322 research outputs found

    Systemic linear polyethylenimine (L‐PEI)‐mediated gene delivery in the mouse

    Get PDF
    Background Several nonviral vectors including linear polyethylenimine(L‐PEI) confer a pronounced lung tropism to plasmid DNA when injected into the mouse tail vein in a nonionic solution. Methods and results We have optimized this route by injecting 50 ”g DNA with excess L‐PEI (PEI nitrogen/DNA phosphate=10) in a large volume of 5% glucose (0.4 ml). In these conditions, 1–5% of lung cells were transfected (corresponding to 2 ng luciferase/mg protein), the other organs remaining essentially refractory to transfection (1–10 pg luciferase/mg protein).ÎČ‐Galactosidase histochemistry confirmed alveolar cells, including pneumocytes, to be the main target, thus leading to the puzzling observation that the lung microvasculature must be permeable to cationic L‐PEI/DNA particles of ca 60 nm. A smaller injected volume, premixing of the complexes with autologous mouse serum, as well as removal of excess free L‐PEI, all severely decreased transgene expression in the lung. Arterial or portal vein delivery did not increase transgene expression in other organs. Conclusions These observations suggest that effective lung transfection primarily depends on the injection conditions: the large nonionic glucose bolus prevents aggregation as well as mixing of the cationic complexes and excess free L‐PEI with blood. This may favour vascular leakage in the region where the vasculature is dense and fragile, i.e. around the lung alveoli. Cationic particles can thus reach the epithelium from the basolateral side where their receptors (heparan sulphate proteoglycans) are abundant

    Effective polyethylenimine-mediated gene transfer into human endothelial cells

    Get PDF
    Background The major advantage in choosing non‐viral vectors such as cationic polymers for in vitro and in vivo transfection is their higher biosafety than viral ones. Among the cationic polymers, polyethylenimines (PEIs) are promising molecules for gene delivery to a variety of cells. Efficient transfection of primary endothelial cells using PEIs could be regarded as an interesting strategy of treatment in some ischemic cardiovascular diseases. Methods Efficacies of a 22‐kDa linear PEI (L‐PEI) and its glucose‐grafted derivative (L‐PEI‐Glc4) were compared for gene transfer into human umbilical vein endothelial cells (HUVEC) using the reporter gene luciferase. Cells were incubated for 2, 4 and 24 h with PEI/DNA complexes made in 150 mM sodium chloride (NaCl) or in 5% glucose solution. Luciferase activity was measured 24 h after the onset of transfection. The effects of low (2%) and high (30%) concentrations of serum on transfection efficacy were assessed as well. We then studied the intracellular fate of the PEI/DNA complexes labelled with the DNA intercalator YOYO‐1 using flow cytometry analysis (FACS) and confocal microscopy. Results PEI/DNA complexes formed in NaCl led to a higher transfection efficacy than those made in glucose. The optimal formulation, depending on the incubation time and the presence of serum in the medium, was obtained using DNA complexed to L‐PEI‐Glc4 and incubated for 4 h with the cells. This condition led to 50% fluorescent cells after GFP transfection. A high serum concentration diminished the L‐PEI associated toxicity but decreased L‐PEI‐Glc4 transfection efficiency. FACS analysis using both vectors showed that almost 90% of the cells had internalized the DNA complexes. Confocal microscopic observations showed a fast attachment of the complexes to the cell surface followed by inclusion into vesicles that migrated to the perinuclear region. Conclusions In this work, we defined the optimal conditions for gene delivery in HUVEC. These conditions were obtained when using derivatives L‐PEI and L‐PEI‐Glc4 complexed with DNA in 150 mM NaCl and added to cells for 2 and 4 h, respectively. Cellular trafficking of the complexes suggested that cell entry was not a limiting factor for gene delivery using PEI. This study underlined the interest in PEIs as efficient vectors for gene transfer into human endothelial cells

    Zip Nucleic Acids: new high affinity oligonucleotides as potent primers for PCR and reverse transcription

    Get PDF
    Most nucleic acid-based technologies rely upon sequence recognition between an oligonucleotide and its nucleic acid target. With the aim of improving hybridization by decreasing electrostatic repulsions between the negatively charged strands, novel modified oligonucleotides named Zip nucleic acids (ZNAs) were recently developed. ZNAs are oligonucleotide–oligocation conjugates whose global charge is modulated by the number of cationic spermine moieties grafted on the oligonucleotide. It was demonstrated that the melting temperature of a hybridized ZNA is easily predictable and increases linearly with the length of the oligocation. Furthermore, ZNAs retain the ability to discriminate between a perfect match and a single base-pair-mismatched complementary sequence. Using quantitative PCR, we show here that ZNAs are specific and efficient primers displaying an outstanding affinity toward their genomic target. ZNAs are particularly efficient at low magnesium concentration, low primer concentrations and high annealing temperatures, allowing to improve the amplification in AT-rich sequences and potentially multiplex PCR applications. In reverse transcription experiments, ZNA gene-specific primers improve the yield of cDNA synthesis, thus increasing the accuracy of detection, especially for genes expressed at low levels. Our data suggest that ZNAs exhibit faster binding kinetics than standard and locked nucleic acid-containing primers, which could explain why their target recognition is better for rare targets

    Genuine DNA/polyethylenimine (PEI) Complexes Improve Transfection Properties and Cell Survival

    Get PDF
    Polyethylenimine (PEI) has been described as one of the most efficient cationic polymers for in vitro gene delivery. Systemic delivery of PEI/DNA polyplexes leads to a lung-expression tropism. Selective in vivo gene transfer would require targeting and stealth particles. Here, we describe two strategies for chemically coupling polyethylene glycol (PEG) to PEI, to form protected ligand-bearing particles. Pre-grafted PEG–PEI polymers lost their DNA condensing property, hence their poor performances. Coupling PEG to pre-formed PEI/DNA particles led to the expected physical properties. However, low transfection efficacies raised the question of the fate of excess free polymer in solution. We have developed a straightforward a purification assay, which uses centrifugation-based ultrafiltration. Crude polyplexes were purified, with up to 60% of the initial PEI dose being removed. The resulting purified and unshielded PEI/DNA polyplexes are more efficient for transfection and less toxic to cells in culture than the crude ones. Moreover, the in vivo toxicity of the polyplexes was greatly reduced, without affecting their efficacy

    Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    Get PDF
    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3â€Č end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes

    Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV

    Get PDF
    We report on a search for anomalous production of events with at least two charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1 sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a signal region containing low background from Standard Model processes. To avoid bias, we fix the final cuts before examining the event yield in the signal region using control regions to test the Monte Carlo predictions. We observe no events in the signal region, consistent with an expectation of 0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new physics processes in both a signature-based context as well as within a representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to figures and updated and expanded reference

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb−1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure

    Observation of Exclusive Gamma Gamma Production in p pbar Collisions at sqrt{s}=1.96 TeV

    Full text link
    We have observed exclusive \gamma\gamma production in proton-antiproton collisions at \sqrt{s}=1.96 TeV, using data from 1.11 \pm 0.07 fb^{-1} integrated luminosity taken by the Run II Collider Detector at Fermilab. We selected events with two electromagnetic showers, each with transverse energy E_T > 2.5 GeV and pseudorapidity |\eta| < 1.0, with no other particles detected in -7.4 < \eta < +7.4. The two showers have similar E_T and azimuthal angle separation \Delta\phi \sim \pi; 34 events have two charged particle tracks, consistent with the QED process p \bar{p} to p + e^+e^- + \bar{p} by two-photon exchange, while 43 events have no charged tracks. The number of these events that are exclusive \pi^0\pi^0 is consistent with zero and is < 15 at 95% C.L. The cross section for p\bar{p} to p+\gamma\gamma+\bar{p} with |\eta(\gamma)| < 1.0 and E_T(\gamma) > 2.5$ GeV is 2.48^{+0.40}_{-0.35}(stat)^{+0.40}_{-0.51}(syst) pb.Comment: 7 pages, 4 figure
    • 

    corecore