11 research outputs found

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.

    Get PDF
    Background Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. Methodology/Principal Findings Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03). Conclusions/Significance Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases

    Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes

    Get PDF
    Developed countries are suffering from an epidemic rise in immunologic disorders, such as allergy-related diseases and certain autoimmunities. Several studies have demonstrated a negative association between helminth infections and inflammatory diseases (eg, allergy), providing a strong case for the involvement of helminth infections in this respect. However, some studies point in the opposite direction. The discrepancy may be explained by differences in frequency, dose, time, and type of helminth. In this review, new studies are discussed that may support the concept that chronic helminth infections in particularβ€”but not acute infectionsβ€”are associated with the expression of regulatory networks necessary for downmodulating allergic immune responses to harmless antigens. Furthermore, different components of regulatory networks are highlighted, such as the role of regulatory T and B cells, modulation of dendritic cells, early innate signals from structural cells (eg, epithelial cells), and their individual contributions to protection against allergic diseases. It is of great interest to define and characterize specific helminth molecules that have profound immunomodulatory capacities as targets for therapeutic application in the treatment or prophylaxis of allergic manifestations

    An essential role for T(H)2-type responses in limiting acute tissue damage during experimental helminth infection

    Get PDF
    Helminths induce potent Th2-type immune responses that can mediate worm expulsion but the importance of this response in controlling acute tissue damage caused by migrating multi-cellular parasites through vital tissues remains uncertain. We used a helminth infection model where parasitic nematode larvae migrate transiently through the lung causing damage resulting in hemorrhage and inflammation. Our findings showed initial elevations in IL-17 contributed to inflammation and lung damage while subsequent IL-4R signaling controlled IL-17 elevations, enhanced expression of insulin-like growth factor 1 and IL-10 and stimulated development of M2 cells, each of which contributed to rapid resolution of tissue damage. These studies indicate an essential role for the Th2-type immune response in mediating acute wound healing during helminth infection
    corecore