21 research outputs found

    Targeted lentiviral vectors pseudotyped with the Tupaia paramyxovirus glycoproteins

    Get PDF
    Lentiviral vectors (LVs) are vectors of choice for many gene therapy applications since they mediate long term gene expression and can transduce dividing and non-dividing cells. Recently, efficient targeting of LVs pseudotyped with the measles virus (MV) glycoproteins has been reported. However, MV antibodies in patients might limit the clinical use of these vectors. Thus, aim of this study was the development of targeted LVs pseudotyped with the glycoproteins of Tupaia paramyxovirus (TPMV). Since this animal paramyxovirus does not infect humans, no TPMV antibodies in patients are expected. For efficient incorporation in LVs, the TPMV glycoproteins, the hemagglutinin (H) and fusion (F) protein, were modified by truncation of their cytoplasmic tails. Targeting was achieved by displaying a single-chain antibody against the B cell surface marker CD20 on the H protein. The modified proteins were biochemically characterized and tested for their functionality. Unexpectedly, it was observed that an additional proteolytic cleavage of the F protein occurs during activation, resulting in the fragments F1a, F1b and F2. The newly identified fragment F1a was detected in virions and in supernatant of transfected cells. The F1a/F1b cleavage site was mapped and a cysteine protease was identified as likely activating protease. The data indicate that F protein processing is more complex than expected. After characterization, the modified TPMV glycoproteins were screened in all combinations for their ability to form functional pseudotyped LVs. Most efficient pseudotype formation was achieved with CT truncations of 80 amino acids (aa) for H (HΔ80αCD20) and 32 aa for F (FΔ32) (titers ~ 106 t.u./ml). The resulting vectors selectively transduced CD20-positive cells in a mixed cell population. Furthermore, they mediated efficient gene transfer into activated and quiescent primary human B cells. Neutralization assays showed that TPMV-pseudotyped vectors were not neutralized by human sera containing MV antibodies. In conclusion, it was demonstrated that targeted LVs pseudotyped with TPMV glycoproteins can be generated and escape neutralization by MV antibodies. Remarkably, the vectors are able to efficiently transduce even quiescent B cells. Hence, they might be a valuable vector choice when systemic application of targeted lentiviral vectors in humans is required

    multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021

    Get PDF
    Funding Information: This project received funding from the European Centre for Disease Prevention and Control (ECDC) under the contract ECD.11486. Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673. Publisher Copyright: © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.Introduction: In July and August 2021, the SARS-CoV-2 Delta variant dominated in Europe. Aim: Using a multicentre test-negative study, we measured COVID-19 vaccine effectiveness (VE) against symptomatic infection. Methods: Individuals with COVID-19 or acute respiratory symptoms at primary care/community level in 10 European countries were tested for SARS-CoV-2. We measured complete primary course overall VE by vaccine brand and by time since vaccination. Results: Overall VE was 74% (95% CI: 69-79), 76% (95% CI: 71-80), 63% (95% CI: 48-75) and 63% (95% CI: 16-83) among those aged 30-44, 45-59, 60-74 and ≥ 75 years, respectively. VE among those aged 30-59 years was 78% (95% CI: 75-81), 66% (95% CI: 58-73), 91% (95% CI: 87-94) and 52% (95% CI: 40-61), for Comirnaty, Vaxzevria, Spikevax and COVID-19 Vaccine Janssen, respectively. VE among people 60 years and older was 67% (95% CI: 52-77), 65% (95% CI: 48-76) and 83% (95% CI: 64-92) for Comirnaty, Vaxzevria and Spikevax, respectively. Comirnaty VE among those aged 30-59 years was 87% (95% CI: 83-89) at 14-29 days and 65% (95% CI: 56-71%) at ≥ 90 days between vaccination and onset of symptoms. Conclusions: VE against symptomatic infection with the SARS-CoV-2 Delta variant varied among brands, ranging from 52% to 91%. While some waning of the vaccine effect may be present (sample size limited this analysis to only Comirnaty), protection was 65% at 90 days or more between vaccination and onset.publishersversionpublishe

    Vaccine effectiveness against symptomatic SARS-CoV-2 infection in adults aged 65 years and older in primary care: I-MOVE-COVID-19 project, Europe, December 2020 to May 2021

    Get PDF
    I-MOVE-COVID-19 primary care study team (in addition to authors above): Nick Andrews, Jamie Lopez Bernal, Heather Whitaker, Caroline Guerrisi, Titouan Launay, Shirley Masse, Sylvie van der Werf, Vincent Enouf, John Cuddihy, Adele McKenna, Michael Joyce, Cillian de Gascun, Joanne Moran, Ana Miqueleiz, Ana Navascués, Camino Trobajo-Sanmartín, Carmen Ezpeleta, Paula López Moreno, Javier Gorricho, Eva Ardanaz, Fernando Baigorria, Aurelio Barricarte, Enrique de la Cruz, Nerea Egüés, Manuel García Cenoz, Marcela Guevara, Conchi Moreno-Iribas, Carmen Sayón, Verónica Gomez, Baltazar Nunes, Rita Roquete, Adriana Silva, Aryse Melo, Inês Costa, Nuno Verdasca, Patrícia Conde, Diogo FP Marques, Anna Molesworth, Leanne Quinn, Miranda Leyton, Selin Campbell, Janine Thoulass, Jim McMenamin, Ana Martínez Mateo, Luca Basile, Daniel Castrillejo, Carmen Quiñones Rubio, Concepción Delgado-Sanz, Jesús Oliva.The I-MOVE-COVID-19 network collates epidemiological and clinical information on patients with coronavirus disease (COVID-19), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virological characterisation in 11 European countries [1]. One component of I-MOVE-COVID-19 is the multicentre vaccine effectiveness (VE) study at primary care/outpatient level in nine European study sites in eight countries. We measured overall and product-specific COVID-19 VE against symptomatic SARS-CoV-2 infection among those aged 65 years and older. We also measured VE by time since vaccination.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673.info:eu-repo/semantics/publishedVersio

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Molecular epidemiology of community- and hospital-associated Clostridioides difficile infections in Jönköping, Sweden, October 2017-March 2018

    No full text
    Clostridioides difficile infections (CDIs) in Sweden are mostly hospital-associated (HA) with limited knowledge regarding community-associated (CA) infections. Here, we investigated the molecular epidemiology of clinical isolates of CA-CDI and HA-CDI in a Swedish county. Data and isolates (n = 156) of CDI patients (n = 122) from Jonkoping county, October 2017-March 2018, were collected and classified as CA (without previous hospital care or onset <= 2 days after admission or >12 weeks after discharge from hospital) or HA (onset >3 days after hospital admission or within 4 weeks after discharge). Molecular characterization of isolates included PCR ribotyping (n = 156 isolates) and whole genome sequencing with single nucleotide polymorphisms (SNP) analysis (n = 53 isolates). We classified 47 patients (39%) as CA-CDI and 75 (61%) as HA-CDI. Between CA-CDI and HA-CDI patients, we observed no statistically significant differences regarding gender, age, 30-day mortality or recurrence. Ribotype 005 (RR 3.1; 95% CI: 1.79-5.24) and 020 (RR 2.5; 95% CI: 1.31-4.63) were significantly associated with CA-CDI. SNP analysis identified seven clusters (0-2 SNP difference) involving 17/53 isolates of both CA-CDI and HA-CDI. Molecular epidemiology differed between CA-CDI and HA-CDI and WGS analysis suggests transmission of CDI within and between hospitals and communities

    A new assay for quantitative detection of hepatitis A virus

    No full text
    Hepatitis A virus (HAV) is mainly transmitted via contaminated food or water or through person-to-person contact. Here, we describe development and evaluation of a reverse transcription droplet digital PCR (RTddPCR) and reverse transcription real-time PCR (RT-qPCR) assay for detection of HAV in food and clinical specimens. The assay was evaluated by assessing limit of detection, precision, matrix effects, sensitivity and quantitative agreement. The 95 % limit of detection (LOD95 %) was 10 % higher for RT-ddPCR than for RTqPCR. A Bayesian model was used to estimate precision on different target concentrations. From this, we found that RT-ddPCR had somewhat greater precision than RT-qPCR within runs and markedly greater precision between runs. By analysing serum from naturally infected persons and a naturally contaminated food sample, we found that the two methods agreed well in quantification and had comparable sensitivities. Tests with artificially contaminated food samples revealed that neither RT-ddPCR nor RT-qPCR was severely inhibited by presence of oysters, raspberries, blueberries or leafy-green vegetables. For this assay, we conclude that RT-qPCR should be considered if rapid, qualitative detection is the main interest and that RT-ddPCR should be considered if precise quantification is the main interest. The high precision of RT-ddPCR allows for detection of small changes in viral concentration over time, which has direct implications for both food control and clinical studies

    Novel influenza A(H1N2) seasonal reassortant identified in a patient sample, Sweden, January 2019

    No full text
    In January 2019, a human seasonal reassortant influenza A(H1N2) virus with a novel 7:1 genetic constellation was identified in a 68-year-old female patient with suspected pneumonia. The virus harboured A(H3N2) neuraminidase and remaining genes from A(H1N1)pdm09. The patient recovered after severe illness. No additional cases have been detected. This is the second identified A(H1N2) seasonal reassortant in a human in Europe within 1 year; a previous case was detected in the Netherlands in March 2018

    Low 2018/19 vaccine effectiveness against influenza A(H3N2) among 15-64-year-olds in Europe: exploration by birth cohort

    Get PDF
    IntroductionInfluenza A(H3N2) clades 3C.2a and 3C.3a co-circulated in Europe in 2018/19. Immunological imprinting by first childhood influenza infection may induce future birth cohort differences in vaccine effectiveness (VE).AimThe I-MOVE multicentre primary care test-negative study assessed 2018/19 influenza A(H3N2) VE by age and genetic subgroups to explore VE by birth cohort.MethodsWe measured VE against influenza A(H3N2) and (sub)clades. We stratified VE by usual age groups (0-14, 15-64, ≥ 65-years). To assess the imprint-regulated effect of vaccine (I-REV) hypothesis, we further stratified the middle-aged group, notably including 32-54-year-olds (1964-86) sharing potential childhood imprinting to serine at haemagglutinin position 159.ResultsInfluenza A(H3N2) VE among all ages was -1% (95% confidence interval (CI): -24 to 18) and 46% (95% CI: 8-68), -26% (95% CI: -66 to 4) and 20% (95% CI: -20 to 46) among 0-14, 15-64 and ≥ 65-year-olds, respectively. Among 15-64-year-olds, VE against clades 3C.2a1b and 3C.3a was 15% (95% CI: -34 to 50) and -74% (95% CI: -259 to 16), respectively. VE was -18% (95% CI: -140 to 41), -53% (95% CI: -131 to -2) and -12% (95% CI: -74 to 28) among 15-31-year-olds (1987-2003), 32-54-year-olds (1964-86) and 55-64-year-olds (1954-63), respectively.DiscussionThe lowest 2018/19 influenza A(H3N2) VE was against clade 3C.3a and among those born 1964-86, corresponding to the I-REV hypothesis. The low influenza A(H3N2) VE in 15-64-year-olds and the public health impact of the I-REV hypothesis warrant further study.We thank Dr Danuta Skowronski for detailed explanation of the I-REV hypothesis, shared discussions and helpful comments on our manuscript. We thank Pernille Jorgensen (WHO/Europe) for her continued support for the I-MOVE network over the years. We acknowledge the authors, originating and submitting laboratories of the sequences from GISAID's EpiFlu Database used for this study. All submitters of data may be contacted directly via the GISAID websitS

    Seroprevalence of SARS-CoV-2 in Sweden, April 26 to May 9, 2021

    No full text
    A national point seroprevalence study of SARS-CoV-2 was conducted in Sweden in April–May 2021. In total, 2860 individuals 3 to 90 years old from a probability-based web panel were included. Results showed that an estimated 32.6% of the population in Sweden had detectable levels of antibodies, and among non-vaccinated 20.1% had detectable levels of antibodies. We tested for differences in seroprevalence between age groups and by sex and estimated seroprevalence among previously infected participants by time since reporting
    corecore