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Introduction: Influenza A(H3N2) clades 3C.2a and 3C.3a 
co-circulated in Europe in 2018/19. Immunological 
imprinting by first childhood influenza infection may 
induce future birth cohort differences in vaccine effec-
tiveness (VE). Aim: The I-MOVE multicentre primary 
care test-negative study assessed 2018/19 influenza 
A(H3N2) VE by age and genetic subgroups to explore 
VE by birth cohort. Methods: We measured VE against 
influenza A(H3N2) and (sub)clades. We stratified VE by 
usual age groups (0–14, 15–64, ≥ 65-years). To assess 
the imprint-regulated effect of vaccine (I-REV) hypoth-
esis, we further stratified the middle-aged group, 
notably including 32–54-year-olds (1964–86) sharing 
potential childhood imprinting to serine at haemag-
glutinin position 159. Results: Influenza A(H3N2) VE 
among all ages was −1% (95% confidence interval 
(CI): −24 to 18) and 46% (95% CI: 8–68), −26% (95% 
CI: −66 to 4) and 20% (95% CI: −20 to 46) among 
0–14, 15–64 and ≥ 65-year-olds, respectively. Among 
15–64-year-olds, VE against clades 3C.2a1b and 3C.3a 
was 15% (95% CI: −34 to 50) and −74% (95% CI: −259 

to 16), respectively. VE was −18% (95% CI: −140 to 41), 
−53% (95% CI: −131 to −2) and −12% (95% CI: −74 to 
28) among 15–31-year-olds (1987–2003), 32–54-year-
olds (1964–86) and 55–64-year-olds (1954–63), 
respectively. Discussion: The lowest 2018/19 influenza 
A(H3N2) VE was against clade 3C.3a and among those 
born 1964–86, corresponding to the I-REV hypothesis. 
The low influenza A(H3N2) VE in 15–64-year-olds and 
the public health impact of the I-REV hypothesis war-
rant further study.

Introduction
The 2018/19 influenza season in Europe was charac-
terised by both A(H1N1)pdm09 and A(H3N2) virus sub-
types circulating, with co-circulation in some countries 
and dominance of either A(H1N1)pdm09 or A(H3N2) 
influenza in other countries [1]. Few influenza B viruses 
were detected in Europe. Influenza A(H3N2) viruses in 
subclades of clade 3C.2a were circulating in Europe, but 
also 3C.3a clade viruses that are antigenically distinct 
[1,2]. The World Health Organization recommended an 
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A/Singapore/INFIMH-16–0019/2016 (H3N2)-like clade 
3C.2a virus as the A(H3N2) vaccine component for the 
2018/19 northern hemisphere season [3].

Since 2008/09, the Influenza Monitoring Vaccine 
Effectiveness in Europe (I-MOVE) primary care multi-
centre case control study (MCCS) has provided vaccine 
effectiveness (VE) estimates by influenza virus (sub)
type, age group and target population. Since 2015/16, 
I-MOVE has also estimated VE by virus genetic clade 
[4,5].

The interim VE estimate against influenza A(H3N2) up 
to week 4/2019 from the European multicentre I-MOVE 
study was −3% (95% confidence interval (CI): −100 to 
47) [6]. The I-MOVE end-of-season VE estimates against 
influenza A(H3N2) indicated a much lower VE among 
15–64-year-olds than among flanking age groups. In 
April 2019, we contacted other northern hemisphere 
study sites measuring VE to share our findings and to 
query if they observed similar results. The same pat-
tern was seen among end-of-season age-specific VE 
estimates against influenza A(H3N2) in Canada and the 
United States (US) [7,29].

During summer 2019, Skowronski et al. in Canada 
investigated an underlying birth cohort effect, poten-
tially related to childhood imprinting, to explain the 
low VE among the adult age group, as articulated in 
their recent publication [7]. Imprinting is the effect 
of antigens of an individual’s first influenza infection 
shaping immune memory, which is retained over the 
individual’s lifetime. Given the often sequential emer-
gence and re-emergence of different influenza A sub-
types and antigenic subclusters across history, there 
can be much variability in imprinting between birth 
cohorts [9]. Imprinting may influence immune- and 
clinical responses to subsequent influenza infections; 
it has been discussed since the 1950s and has been 
widely reported on in recent years [10-16]. Skowronski 
et al.’s hypothesis of imprint-regulated effect of vac-
cine (I-REV) specifically invokes childhood imprint-
ing to a serine (S) residue at position 159 of antigenic 
site B in the haemagglutinin (HA) of circulating influ-
enza A(H3N2) viruses and to a lesser extent also 
potential imprinting to S at position 193 also within 
HA antigenic site B. The hypothesis assumes that the 
S159-specific immune response resulting from this 
childhood imprinting protected unvaccinated adults 

Figure 1
Number of ILI patients by influenza A(H3N2) status (test-negative controls and A(H3N2) cases) and week of symptom 
onset, I-MOVE primary care multicentre study, Europe, influenza season 2018/19 (n = 6,172)
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against circulating S159-bearing 3C.3a viruses during 
the 2018/19 influenza A(H3N2) epidemic but that the 
2018/19 Y159-mismatched vaccine interfered with that 
pre-immunity. The Canadian research team observed a 
4.46-fold increased risk of 3C.3a illness (95% CI: 1.58 to 
13.21) among vaccinated compared with unvaccinated 
35–54-year-olds, roughly corresponding in 2018/19 to 
the birth cohort 1964–83 [7].

Since the influenza A(H3N2) pandemic in 1968, when 
influenza A(H3N2) first emerged, several amino acid 
substitutions occurred at position 159 in antigenic site 
B in the HA of A(H3N2) viruses circulating in Europe 
[17], changing from a predominance of S to tyrosine (Y) 
in 1987 and then to phenylalanine (F) in 2004 until and 
including the 2013/14 season. Since 2014/15, the pre-
dominant amino acid at position 159 in antigenic site 
B in the HA among influenza A(H3N2) viruses circulat-
ing in Europe has been Y among 3C.2a viruses and S 
among 3C.3a viruses. Amino acid change from S to Y at 
this position in 1987 has been identified as the cause 
of cluster transition owing to a large impact on the 
antigenic characteristics [18,19], although other amino 
acid changes of the HA might have played a role in 
the net effect of S159Y [20]. As well as harbouring the 
F159S substitution, 3C.3a viruses circulating in 2018/19 
season harboured the F193S substitution, a position 
substituted several times since 1968; the F193S substi-
tution is included in the I-REV hypothesis.

Using the I-MOVE MCCS, we report 2018/19 end-of-
season VE against influenza A(H3N2), overall, by age 
group and for A(H3N2) (sub)clades. We further test the 
I-REV hypothesis that the birth cohort first exposed to 
A(H3N2) viruses with S at position 159 in the HA anti-
genic site B experienced the lowest VE against influ-
enza A(H3N2) in this season [7].

Methods
The I-MOVE methods have been discussed in detail 
elsewhere [21,22]. Briefly, study sites in nine European 
countries took part in the primary care-based I-MOVE 
multicentre study in the 2018/19 influenza season: 
Croatia, France, Germany, Ireland, the Netherlands, 
Portugal, Romania, Spain and Sweden. General practi-
tioners (GPs) or paediatricians systematically selected 
patients with influenza-like illness (ILI) or acute respir-
atory infection (ARI) to interview and swab. Using the 
test-negative design, patients positive for influenza 
virus were classified as cases (by influenza virus (sub)
type), those negative as controls [23].

Determining vaccination status and vaccine 
effectiveness calculation
In the pooled analysis, patients meeting the European 
Union ILI case definition [24] and swabbed within 7 
days of symptom onset were included. Vaccination sta-
tus for current (including date of vaccination and type 
of vaccine used) and previous season was documented 
either through patients’ self-report or extracted from 
practitioners’ vaccine registries. A patient was con-
sidered vaccinated if they received at least one dose 
of influenza vaccine more than 14 days before symp-
tom onset, or excluded from the analysis if vaccinated 
any other time in the current season. We used logistic 
regression to measure VE as (1 − OR) × 100. We carried 
out a complete case analysis. We included study site 
as a fixed effect and adjusted by age, sex, symptom 
onset time and presence of chronic condition. The 
functional form (categories, continuous variable or 
restricted cubic spline) of age and symptom onset time 
was determined using the Akaike information criterion.

Prior vaccination
To study the effect of prior (2017/18) vaccination on the 
2018/19 VE, we conducted an indicator analysis using 

Table 1
Genetic group distribution among eight study sites participating in the random sequencing of influenza virus-positive 
specimens overall and by age group, I-MOVE primary care multicentre study, Europe, influenza season 2018/19 (n = 575)

Characterised virusesa Clade/subclade
All ages 0–14 years 15–64 years ≥65 years

n % n % n % n %
A/Alsace/1746/2018

3C.2a1b
346 60 71 40 214 68 61 73

+ T131Kb 137 40 34 48 83 39 20 33
+ T135Kb 209 60 37 52 131 61 41 67
A/Switzerland/8060/2017 3C.2a2 8 1 1 1 6 2 1 1
A/Cote d‘Ivoire/544/2016 3C.2a3 16 3 5 3 10 3 1 1
A/Valladolid/182/2017 3C.2a4 1 0 1 1 0 0 0 0
A/England/538/2018 3C.3a 204 35 98 56 86 27 20 24
All sequenced 575 100 176 100 316 100 83 100

a All 3C.2a1b, 3C.2a2, 3C.2a3, 3C.2a4 viruses bear Y159 in antigenic site B in the influenza haemagglutinin (HA). Of the 204 3C.3a viruses, 
203 were S159-bearing, one 3C.3a virus was F159-bearing. Of the 209 3C.2a1b + T135K viruses, 196 also harboured the T128A substitution in 
antigenic site A in the HA. 

b Positions 131 and 135 are within antigenic site A in the HA. The rows entitled +T131K and +T135K contain counts of genetic variants of A/
Alsace/1746/2018 and together, their counts equal the total in the row of A/Alsace/1746/2018.
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four categories: individuals unvaccinated in both sea-
sons (reference category), vaccinated in 2018/19 only, 
vaccinated in 2017/18 only and vaccinated in both 
seasons. We did not measure effect of prior (2017/18) 
vaccination among children younger than 9 years for 
whom the number of doses recommended depends on 
whether they were vaccinated in the previous season 
or not.

Genetic characterisation and clade-specific 
vaccine effectiveness
Eight study sites either randomly selected specimens 
for sequencing or attempted to sequence the HA gene 
segment of all specimens. HA consensus sequences 
were uploaded by each site to the Global Initiative on 
Sharing All Influenza Data (GISAID) for ease of shar-
ing and downloaded for centralised phylogenetic and 
amino acid substitution analysis of the HA1 coding por-
tion in MEGA6 to determine clade distribution at the 
National Influenza Centre, Madrid.

For the clade-specific VE analyses, we restricted the 
study period to weeks of symptom onset from first to 
last clade-specific influenza case by study site.

Age group- and birth cohort-specific vaccine 
effectiveness
We measured VE by standard I-MOVE age groups (0–14, 
15–64 and ≥ 65 years). To assess potential birth cohort 
effects, we further stratified the 15–64 years age group 
into three sub-categories, for which the corresponding 
range of birth years was derived assuming a birth year 
before season start (i.e. 2018 − age in years): 1987–
2003, 1964–86 and 1954–63, corresponding to 15–31, 
32–54 and 55–64-year-olds. The 1964–86 birth cohort 

(32–54-year-olds) was an adaptation of the I-REV 
hypothesis of first childhood imprinting with S159-
bearing viruses during the ca 20-year period following 
the 1968 influenza A(H3N2) pandemic and is based 
on the analysis of historical virological sequence data 
(not shown) downloaded from GISAID. We gratefully 
acknowledge the authors, originating and submitting 
laboratories of these sequences from GISAID’s EpiFlu 
database [17]. We allowed a period of several years 
from birth to first influenza infection, including individ-
uals born 4 years before the 1968 influenza A(H3N2) 
pandemic among those likely to be imprinted with S159-
bearing viruses (i.e. those born in 1964 or later). We 
included in this birth cohort individuals born until and 
including 1986, after which there was negligible (< 5%) 
circulation of S159-bearing viruses. We compared age 
group- and birth cohort-specific VE by using an interac-
tion between vaccination and age group/birth cohort.

Other statistical methods
To avoid overfitting the logistic regression model, we 
did not attempt to measure VE if there were fewer than 
10 cases or controls per number of parameters within 
the study site variable (N−1) in the logistic regression 
model. If there were fewer than 10 cases or controls per 
number of all parameters, we carried out a sensitivity 
analysis using Firth’s method of penalised regression.

Ethical statement
The planning conduct and reporting of the studies was 
in line with the Declaration of Helsinki [25]. Official 
ethical approval was not needed in the Netherlands 
and Spain, as their I-MOVE studies came under the 
umbrella of surveillance. Other study sites sought 
ethical approval for their studies from a national 

Table 2
Pooled adjusted seasonal vaccine effectiveness against influenza A(H3N2), overall, by age groups, by clade and genetic 
variants, I-MOVE primary care multicentre study, Europe, influenza season 2018/19 (n = 5,802)

Age group Outcome n
Cases Controls Adjusted VE 

(%) 95% CI (%)
All Vaccinated All Vaccinated

All ages

A(H3N2)

5,802 1,917 265 3,885 485 −1 −24 to 18
0–14 years 2,008 668 33 1,340 62 46 8–68
15–64 years 3,153 1,038 123 2,115 194 −26 −66 to 4
≥ 65 years 641 211 109 430 229 20 −20 to 46
All ages

A(H3N2) clade 3C.2a1b
3,217 334 55 2,883 375 28 −7 to 51

15–64 years 1,799 211 26 1,588 159 15 −43 to 50
All ages A(H3N2) clade 

3C.2a1b + T131Ka

2,582 131 15 2,451 329 57 16–78
15–64 years 1,468 81 7 1,387 141 51 −21 to 80
All ages A(H3N2) clade 

3C.2a1b + T135Ka

2,764 203 40 2,561 342 7 −52 to 43
15–64 years 1,515 130 19 1,385 145 −7 −102 to 43
All ages

A(H3N2) clade 3C.3a
2,000 201 35 1,799 270 −42 −137 to 15

0–14 years 715 97 8 618 41 42 −58 to 78
15–64 years 1,082 84 12 998 115 −74 −259 to 6

a Positions 131 and 135 are in antigenic site A in the influenza haemagglutinin.
CI: confidence interval; VE: vaccine effectiveness.
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review board, according to country-specific regula-
tions (Croatia: Klasa 030-02/18-01/1, Ur. broj 381-10-
18-2; France: #471393; Germany: EA2/126/11; Ireland: 
ICGP2018.4.12; Portugal: approved January 18th  2012 
by the Ethics Committee of Instituto Nacional de Saúde 
Doutor Ricardo Jorge (no registration number given); 
Romania: CE312/18.12.2018; Sweden: 2006/1040-31/2).

Results
In the 2018/19 season, we included 2,027 influenza 
A(H3N2)-positive cases and 4,145 influenza-negative 
controls between ISO weeks 43/2018 and 17/2019 
(Figure 1). The median age among cases was 30 years 
(interquartile range (IQR): 10–53 years) and the median 
age among controls was 31 years (IQR: 6–52 years) 
(Supplement 1). Among controls, 12% (490/3,931) were 
vaccinated compared with 14% (268/1,938) among 
cases. Among the 490 vaccinated controls, the influ-
enza vaccine brand was unknown for 30%. Among the 
341 with known brand, 61% (206/341) were vaccinated 

with a quadrivalent inactivated vaccine, 34% (117/341) 
were vaccinated with a trivalent non-adjuvanted inacti-
vated vaccine, 4% (12/341) were vaccinated with a tri-
valent inactivated adjuvanted vaccine and 2% (6/341) 
were vaccinated with a live attenuated influenza vac-
cine. All vaccines were egg-propagated.

Virological findings
In 2018/19 we randomly selected 575 of the 2,027 
A(H3N2) viruses (28%) for sequencing (Table 1). 
Among those sequenced, 346 (60%) belonged to the 
3C.2a1b clade and 204 (35%) belonged to the 3C.3a 
clade. The proportion of 3C.3a viruses was higher 
among 0–14-year-olds than in other age groups (56% 
vs 27%/24%, both p < 0.001). Among 3C.2a1b viruses, 
137/346 (40%) harboured a T131K substitution and 
209/346 (60%) a T135K substitution within antigenic 
site A in the influenza HA.

Figure 2
Birth cohort-specific vaccine effectiveness against influenza A(H3N2), I-MOVE primary care multicentre study, Europe, 
influenza season 2018/19 (n = 5,802)
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In the complete case analysis we dropped 5% 
(110/2,027) of cases and 6% (260/4,145) of controls 
because of missing values in key covariates.

The 2018/19 end-of-season VE against influenza 
A(H3N2) among all ages was −1% (95% CI: −24 to 18) 
(Table 2). VE among 15–64 year olds was −26% (95% 
CI: −66 to 4), lower than the VE among 0–14-year-
olds (46%; 95% CI: 8–68; p value for difference to 
15–64-year-olds: p = 0.020) and among those 65 years 
and older (20%; 95% CI: −20 to 46; p value for differ-
ence to 15–64-year-olds: p = 0.321) (Table 2).

Among the birth cohort 1964–86 (32–54-year-olds), 
i.e. those potentially exposed in childhood to an S159-
bearing A(H3N2) virus, the VE was −53% (95% CI: −131 
to −2) (Figure 2). The VE among those born 1987–2003 
(15–31-year-olds) and 1954–63 (55–64-year-olds) was 
−18% (95% CI: −140 to 41) and −12% (95% CI: −74 
to 28), respectively. The same pattern is seen when 
modelling influenza A(H3N2) VE by year of age; further 
details are listed in Supplement 2.

Clade-specific vaccine effectiveness
VE against clade 3C.2a1b was 28% (95% CI: −7 to 51) 
among all ages, with a VE of 15% (95% CI: −43 to 50) 
among those aged 15–64 years (Table 2). VE against 
clade 3C.2a1b with the T131K substitution among all 

ages was 57% (95% CI: 16–78) and among those aged 
15–64 years 51% (95% CI: −21 to 80). The VE against 
clade 3C.2a1b with the T135K substitution was 7% 
(95% CI: −52 to 43) among all ages and among those 
aged 15–64 years −7% (95% CI: −102 to 43).

VE against clade 3C.3a was −42% (95% CI: −137 to 
15) among all ages, −74% (95% CI: −259 to 16) among 
those aged 15–64 years, and 42% (95% CI: −58 to 78) 
among those aged 0–14 years. Because of the small 
sample size, further age stratification was not carried 
out.

Vaccine effectiveness against influenza 
A(H3N2) and subclades by previous vaccination 
status
The VE against clade 3C.2a1b among those vaccinated 
in the 2018/19 season only was −14% (95% CI: −132 to 
44) and 49% (95% CI: 17–69) among those vaccinated 
in the 2017/18 and 2018/19 seasons (Table 3).

The VE against clade 3C.3a among those vaccinated in 
the 2018/19 season only was −34% (95% CI: −248 to 
49) and −122% (95% CI: −353 to −9) among those vac-
cinated in the 2017/18 and 2018/19 seasons.

Table 3
Pooled adjusted seasonal vaccine effectiveness against influenza A(H3N2), by previous vaccination status, among those 
aged ≥ 9 years and by age group, by clade and genetic variants, I-MOVE primary care multicentre study, Europe, influenza 
season 2018/19 (n = 3,983)

Age group Outcome Previous vaccination status Cases Controls Adjusted VE (%) 95% CI (%)

≥ 9 years A(H3N2)

Not vaccinated in either season 1,147 2,061 Ref
Vaccinated in 2018/19 only 76 99 −27 −81 to 11
Vaccinated in 2017/18 only 25 113 45 11 to 66
Vaccinated in both seasons 153 309 5 −23 to 27

15–64 years A(H3N2)

Not vaccinated in either season 852 1,719 Ref
Vaccinated in 2018/19 only 46 59 −43 −121 to 7
Vaccinated in 2017/18 only 17 79 46 5 to 70
Vaccinated in both seasons 69 116 −14 −62 to 20

≥ 65 years A(H3N2)

Not vaccinated in either season 91 152 Ref
Vaccinated in 2018/19 only 24 36 22 −62 to 63
Vaccinated in 2017/18 only 5 30 48 −55 to 83
Vaccinated in both seasons 78 184 31 −9 to 56

≥ 9 years Clade 3C.2a1b

Not vaccinated in either season 209 1,492 Ref
Vaccinated in 2018/19 only 12 80 −14 −132 to 44
Vaccinated in 2017/18 only 4 74 NDa

Vaccinated in both seasons 36 203 49 17 to 69

≥ 9 years Clade 3C.3a

Not vaccinated in either season 94 930 Ref
Vaccinated in 2018/19 only 6 58 −34 −248 to 49
Vaccinated in 2017/18 only 3 42 NDa

Vaccinated in both seasons 20 163 −122 −353 to −9

a Omitted because of small sample size.
CI: confidence interval; ND: not done; Ref: reference value; VE: vaccine effectiveness.
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Discussion
The VE against influenza A(H3N2) in the 2018/19 
I-MOVE study was low overall. Results suggest that this 
was driven by the age group 15–64 years, in whom the 
2018/19 influenza vaccine was not effective against 
influenza A(H3N2). The lack of VE against influenza 
A(H3N2) among 15–64-year-olds has not been seen 
before in I-MOVE studies [26-29]. The VE against influ-
enza A(H3N2) in this age group in 2016/17 and 2017/18, 
when the A/Hong Kong/4801/2014 (H3N2)-like vaccine 
virus component was used (a 3C.2a clade virus) and 
predominantly 3C.2a (sub)clades circulated, was 34% 
and 33%, respectively [5]. The 2018/19 VE was higher 
in flanking age groups. This pattern was also observed 
in Canada in VE against influenza A(H3N2), the US out-
patient VE study against influenza A(H3N2)and the US 
inpatient VE study against any influenza [7,8,30]. In 
the latter study, the VE against influenza A(H3N2) was 
−43% (95% CI: −102 to −2).

An overall low VE was expected because of egg propa-
gation of the vaccine seed virus and the co-circulation 
of clade 3C.3a viruses that are genetically distinct from 
the vaccine virus clade [2]. In addition, even among 
the 3C.2a1b viruses, which are genetically closer to 
the vaccine virus, two distinct clusters have emerged 
and point estimates indicate that the T135K-harbouring 
genetic variant may have a lower VE than the T131K-
harbouring genetic variant. The T135K-harbouring 
genetic variant most often also harboured the T128A 
substitution; both mutations result in loss of glycosyla-
tion sequons [31], which can be associated with anti-
genic change. But these factors alone are not sufficient 
to explain the observed age-specific difference in VE 
against influenza A(H3N2) in 2018/19.

In this 2018/19 season, VE against clade 3C.3a was 
very low among 15–64-year-olds, indicating that clade 
3C.3a viruses played a major role in the observed VE 
against any influenza A(H3N2) in this age group. The 
marked differences in point estimates among 0–14- 
and 15–64-year-olds in VE against clade 3C.3a may 
indicate a birth cohort effect. When stratifying the age 
group 15–64 years according to birth cohorts who had 
or had not been potentially imprinted with A(H3N2) 
viruses bearing S159 in antigenic site B in the HA, we 
observe the lowest VE point estimate among those 
born 1964–86 (32–54-year-olds; those with the poten-
tial exposure to S159-bearing A(H3N2) virus). This dip 
in VE is consistent with the I-REV hypothesis [7]. The 
low VE against influenza A(H3N2) among those born 
1954–63 (aged 55–64 years) could be explained in part 
by random variation because of low sample size. Also, 
these individuals are likely to have been imprinted in 
early childhood by A(H2N2), followed by potential re-
infection with a S159-bearing A(H3N2) influenza virus. 
The analogous position to 159 in antigenic site B in the 
A(H2N2) HA is 154. The predominant amino acid at this 
position was S during the influenza A(H2N2) pandemic 
in 1957/58 and during early influenza A(H2N2) circula-
tion, moving to proline (P) and glutamine (Q) in later 

years; this position is associated with antigenic clus-
ter transition [32,33]. It is unclear if imprinting with 
S154-bearing A(H2N2) viruses may have had a similar 
effect to imprinting with S159-bearing A(H3N2) viruses 
as so few patients in the study constitute the 1954–63 
birth cohort and among those, only a subset would 
have been infected with S154-bearing A(H2N2) viruses. 
In addition, it has been suggested that infection with 
pandemic influenza A(H2N2) after likely first imprint-
ing with influenza A(H1N1) may give rise to long-last-
ing immunological influenza A(H2N2) imprinting [33]. 
Again, we are unable to determine if the low VE among 
the 1954–63 birth cohort was analogously due to immu-
nological imprinting by S159-bearing A(H3N2) viruses 
after first imprinting with A(H2N2) viruses, however 
further research in this field may be warranted.

If infection by S159-bearing A(H3N2) viruses were 
the only factor influencing the observed age-specific 
differences in VE, then we would expect a higher VE 
among those born 1987–2003 (aged 15–31 years), 
who were not likely to be imprinted by S159-bearing 
A(H3N2) viruses in childhood. While the VE among 
those born 1987–2003 (aged 15–31 years) was higher 
than that among those born 1964–86 (aged 32–54 
years), it was still low and not statistically significantly 
different. The lack of difference in estimates could be 
in part explained by a dilution effect of both 3C.3a and 
3C.2a1b co-circulating among adult age groups during 
the 2018/19 season and in particular also by sample 
size issues relating to the low vaccination coverage 
in this group in our study. Notably, as suggested by 
Skowronski et al. [7], the influence of substitutions 
at positions other than 159, such as 193, also within 
the antigenic site B in the HA, may further explain 
the low VE among those born 1987–2003 (aged 15–31 
years). The pattern of VE by year of age as illustrated 
in Supplementary Figure S2A, is what we would expect 
to see if there was a strong effect of S159-bearing 
viruses among those born in 1964–86 and also an 
effect of S193-bearing viruses in 1991–2005. The gen-
tle slope upwards among those born in 1954–63 is also 
compatible with the plausible assumption that some 
individuals in this birth cohort potentially had their 
first influenza infection (and were imprinted) by an 
A(H3N2) S159-bearing influenza virus after the age of 5 
years and thus drive the VE estimates downwards. This 
analysis of VE by year of age is, however, sensitive to 
knot position (as outlined in Supplement 2) and should 
be interpreted with caution.

While being vaccinated in the 2017/18 season improved 
2018/19 VE against clade 3C.2a1b, it had the opposite 
effect against clade 3C.3a. Repeat vaccination, with the 
2017/18 and 2018/19 Y159-containing vaccines, in addi-
tion to childhood imprinting, may be a further piece 
of the puzzle explaining the low VE observed against 
influenza A(H3N2) in 2018/19, as also suggested by 
Skowronski et al. as a potential immunological mecha-
nism underpinning their I-REV hypothesis [7].
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The low VE among 15–64-year-olds may also be 
explained by bias. In I-MOVE countries, this age group 
is not part of a universal influenza vaccination recom-
mendation. In this age group, only people with pre-
existing medical conditions (e.g. cardiorespiratory 
diseases, pregnancy) and healthcare workers are rec-
ommended and offered vaccinations in these countries 
[34]. The VE in the target group for vaccination among 
the 15–64 year age group was −5% (see Supplement 3) 
and while still low, it was higher than the VE among 
15–64-year-olds in the general population. However, in 
this age group, the target group for vaccination had a 
lower percentage of clade 3C.3a-infected persons (20% 
vs 30%). Importantly, the small sample size limits the 
inferences we can draw about birth cohort effects.

More research needs to be carried out into selection 
bias and sparse data bias. We attempted to assess 
sparse data bias, by comparing standard logistic 
regression to penalised logistic regression whenever 
models may have been overfitted. While the VE of the 
penalised logistic regression was always more towards 
the null, the absolute difference between the two VE 
estimates was always < 4%. The I-MOVE study is subject 
to the usual biases of observational studies, however 
it is a well-established and stable study. Age-specific 
VE differences to the extent observed for influenza 
A(H3N2) in 2018/19 were not observed for influenza 
A(H1N1)pdm09 in the same season, nor for influenza 
A(H3N2) in any previous season, which makes it less 
likely that bias was a major explanatory factor. Small 
sample size limits the precision of our birth cohort-
specific estimates and some confidence limits overlap. 
Despite this, we still observe a significant difference 
in VE not only between the youngest and middle age 
group (0–14 years vs 15–64 years; p = 0.020), but also 
between the 2004–18 (0–14-year-olds) and 1964–86 
(32–54-year-olds) birth cohorts (p value for differ-
ence = 0.036), as point estimates are so different. 
Overlapping confidence intervals among birth cohorts 
within the middle age group are expected given the 
small sample size and the expectation of low VE among 
several birth cohorts (those potentially infected with 
S159-bearing and those potentially infected with S193-
bearing viruses) according to the I-REV hypothesis.

Further investigations are necessary to understand 
these age-specific differences in VE against influenza 
A(H3N2) in the 2018/19 season, including further analy-
sis of the effects of previous vaccination and a more in-
depth analysis of birth cohorts and virological changes 
in Europe over time. These analyses could include a 
focus on amino acid changes at key positions, but also 
the influence of influenza A(H1N1), A(H2N2) and B virus 
imprinting on the 2018/19 VE against influenza A(H3N2) 
[18,35]. To better understand birth cohort effects in 
influenza, we welcome the two US National Institutes 
of Health-funded studies among infants [36]; however, 
we would also welcome a European longitudinal study 
among working age adults, to better understand how 
influenza imprinting and prior and repeated vaccination 

may affect future VE when this cohort becomes part of 
the target group for vaccination. This study also high-
lights the importance of sequencing viruses included 
in a VE study as this can be crucial to interpretation of 
VE findings and variation by sub-strata.

Our results suggest that influenza A(H3N2) VE may be 
low among middle-aged adults in subsequent seasons 
if a Y159-bearing vaccine virus (e.g. 3C.2a1 subclade) is 
used and 3C.3a or S159-bearing viruses are circulating. 
The reverse scenario (e.g. 3C.3a vaccine and circulating 
3C.2a1 viruses, potentially applicable to the 2019/20 
season), merits consideration, as the influenza A(H3N2) 
VE may also be low. In these two scenarios and if the 
season is dominated by influenza A(H3N2), early rec-
ommendations for other prophylactic measures, such 
as use of neuraminidase inhibitors as prophylaxis or 
treatment among risk populations regardless of vac-
cination status, should be considered, even among 
younger adults. We encourage other study sites to 
measure birth cohort-specific VE in the 2019/20 and 
subsequent seasons to try and understand more about 
mechanisms of birth cohort-specific effects.
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