88 research outputs found

    Wolf in Sheep’s Clothing: Model Misspecification Undermines Tests of the Neutral Theory for Life Histories

    Get PDF
    Understanding the processes behind change in reproductive state along life-history trajectories is a salient research program in evolutionary ecology. Two processes, state dependence and heterogeneity, can drive the dynamics of change among states. Both processes can operate simultaneously, begging the difficult question of how to tease them apart in practice. The Neutral Theory for Life Histories (NTLH) holds that the bulk of variations in life-history trajectories is due to state dependence and is hence neutral: Once previous (breeding) state is taken into account, variations are mostly random. Lifetime reproductive success (LRS), the number of descendants produced over an individual\u27s reproductive life span, has been used to infer support for NTLH in natura. Support stemmed from accurate prediction of the population-level distribution of LRS with parameters estimated from a state dependence model. We show with Monte Carlo simulations that the current reliance of NTLH on LRS prediction in a null hypothesis framework easily leads to selecting a misspecified model, biased estimates and flawed inferences. Support for the NTLH can be spurious because of a systematic positive bias in estimated state dependence when heterogeneity is present in the data but ignored in the analysis. This bias can lead to spurious positive covariance between fitness components when there is in fact an underlying trade-off. Furthermore, neutrality implied by NTLH needs a clarification because of a probable disjunction between its common understanding by evolutionary ecologists and its translation into statistical models of life-history trajectories. Irrespective of what neutrality entails, testing hypotheses about the dynamics of change among states in life histories requires a multimodel framework because state dependence and heterogeneity can easily be mistaken for each other

    Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population

    Get PDF
    Studies of wild vertebrates have provided evidence of substantial differences in lifetime reproduction among individuals and the sequences of life history ‘states’ during life (breeding, nonbreeding, etc.). Such differences may reflect ‘fixed’ differences in fitness components among individuals determined before, or at the onset of reproductive life. Many retrospective life history studies have translated this idea by assuming a ‘latent’ unobserved heterogeneity resulting in a fixed hierarchy among individuals in fitness components. Alternatively, fixed differences among individuals are not necessarily needed to account for observed levels of individual heterogeneity in life histories. Individuals with identical fitness traits may stochastically experience different outcomes for breeding and survival through life that lead to a diversity of ‘state’ sequences with some individuals living longer and being more productive than others, by chance alone. The question is whether individuals differ in their underlying fitness components in ways that cannot be explained by observable ‘states’ such as age, previous breeding success, etc. Here, we compare statistical models that represent these opposing hypotheses, and mixtures of them, using data from kittiwakes. We constructed models that accounted for observed covariates, individual random effects (unobserved heterogeneity), first-order Markovian transitions between observed states, or combinations of these features. We show that individual sequences of states are better accounted for by models incorporating unobserved heterogeneity than by models including first-order Markov processes alone, or a combination of both. If we had not considered individual heterogeneity, models including Markovian transitions would have been the best performing ones. We also show that inference about age-related changes in fitness components is sensitive to incorporation of underlying individual heterogeneity in models. Our approach provides insight into the sources of individual heterogeneity in life histories, and can be applied to other data sets to examine the ubiquity of our results across the tree of life

    Temporal correlations among demographic parameters are ubiquitous but highly variable across species

    Get PDF
    Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species

    Archiving primary data: solutions for long-term studies

    Get PDF
    The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers

    Variation in Size and Growth of the Great Scallop Pecten maximus along a Latitudinal Gradient

    Get PDF
    Understanding the relationship between growth and temperature will aid in the evaluation of thermal stress and threats to ectotherms in the context of anticipated climate changes. Most Pecten maximus scallops living at high latitudes in the northern hemisphere have a larger maximum body size than individuals further south, a common pattern among many ectotherms. We investigated differences in daily shell growth among scallop populations along the Northeast Atlantic coast from Spain to Norway. This study design allowed us to address precisely whether the asymptotic size observed along a latitudinal gradient, mainly defined by a temperature gradient, results from differences in annual or daily growth rates, or a difference in the length of the growing season. We found that low annual growth rates in northern populations are not due to low daily growth values, but to the smaller number of days available each year to achieve growth compared to the south. We documented a decrease in the annual number of growth days with age regardless of latitude. However, despite initially lower annual growth performances in terms of growing season length and growth rate, differences in asymptotic size as a function of latitude resulted from persistent annual growth performances in the north and sharp declines in the south. Our measurements of daily growth rates throughout life in a long-lived ectothermic species provide new insight into spatio-temporal variations in growth dynamics and growing season length that cannot be accounted for by classical growth models that only address asymptotic size and annual growth rate

    Archiving Primary Data: Solutions for Long-Term Studies

    Full text link

    Early development, recruitment and life history trajectory in long-lived birds

    No full text
    International audienceLindström (in Trends Ecol Evol 14:343-347, 1999) synthesized knowledge about "early development and fitness in birds and mammals", interesting tracks and challenges for future studies. Today, there is unambiguous evidence that Lindström's first statement holds in long-lived birds: "It is obvious that adverse environmental conditions might have immediate effects [...]." However, whether there are "long-term fitness consequences of conditions experienced during early development" (Lindström's second statement) is unclear for long-lived birds. The extent to which the disadvantage of frail individuals at independence is expressed predominantly in terms of higher mortality and disappearance from the population before recruitment, or persists after recruitment, is still an open question. Due to the rarity of relevant data and the fact that most studies are retrospective, heterogeneity in methods and timescales hampers the identification of general patterns. Nevertheless, several studies have provided evidence of a relationship between early conditions and future reproductive parameters, or lifetime reproductive success. Evidence from large mammals suggests substantial long-term individual and population effects of early conditions, including trans-generational maternal effects. Evidence from short-lived birds also suggests long-term individual consequences, and maternal effects have been documented in long-lived ones. Despite logistical and financial difficulties inherent in long-term studies, they are the only way of addressing Lindström's second statement. Existing long-term longitudinal datasets should be re-analyzed using recently developed capture-mark-recapture models handling state uncertainty and unobservable heterogeneity in populations. Statistical methods designed to estimate lifetime reproductive success or incorporate pedigree information in standard situations of studies of wild vertebrates with imperfect detection offer new opportunities to assess long-term fitness consequences of early development in long-lived birds
    • 

    corecore