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Abstract
Understanding the processes behind change in reproductive state along life-history tra-
jectories is a salient research program in evolutionary ecology. Two processes, state 
dependence and heterogeneity, can drive the dynamics of change among states. Both 
processes can operate simultaneously, begging the difficult question of how to tease 
them apart in practice. The Neutral Theory for Life Histories (NTLH) holds that the bulk 
of variations in life-history trajectories is due to state dependence and is hence neutral: 
Once previous (breeding) state is taken into account, variations are mostly random. 
Lifetime reproductive success (LRS), the number of descendants produced over an indi-
vidual’s reproductive life span, has been used to infer support for NTLH in natura. 
Support stemmed from accurate prediction of the population-level distribution of LRS 
with parameters estimated from a state dependence model. We show with Monte Carlo 
simulations that the current reliance of NTLH on LRS prediction in a null hypothesis 
framework easily leads to selecting a misspecified model, biased estimates and flawed 
inferences. Support for the NTLH can be spurious because of a systematic positive bias 
in estimated state dependence when heterogeneity is present in the data but ignored in 
the analysis. This bias can lead to spurious positive covariance between fitness compo-
nents when there is in fact an underlying trade-off. Furthermore, neutrality implied by 
NTLH needs a clarification because of a probable disjunction between its common un-
derstanding by evolutionary ecologists and its translation into statistical models of life-
history trajectories. Irrespective of what neutrality entails, testing hypotheses about the 
dynamics of change among states in life histories requires a multimodel framework be-
cause state dependence and heterogeneity can easily be mistaken for each other.
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evolutionary ecology, heterogeneity, life history, misspecification, neutral model, null model, 
state dependence

1  | INTRODUCTION

An observed life history is the integrative result of an individual’s abil-
ity to grow, survive, and reproduce (Reznick, Nunney, & Tessier, 2000). 

Standing at the crossroads of demography and evolutionary ecology, 
life-history studies focus on how individuals of a given generation 
manage to spread their genes into the next (Metcalf & Parvard, 2007). 
A salient line of inquiry seeks to explain the interindividual variability 
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in life histories of iteroparous organisms in the wild (Cam, Aubry, & 
Authier, 2016). This topic has sustained a steady number of new pub-
lications (≈20 every year since 2010) and a large number of citations 
(>300 per year) in the ecological research community over the past 5 
years (Appendix S1). An important question is to what extent, if any, 
are variations in life histories heritable. Individual heterogeneity is the 
oft-used term to explain variation in life-history traits, variations which 
can fuel adaptive phenotypic evolution (Wilson & Nussey, 2010). By 
contrast, individual stochasticity refers to variations that are irrele-
vant to natural selection: “[t]he movement of an individual through 
its life cycle is a random process, and although [death] is certain, the 
pathways taken to that destination are stochastic and will differ even 
between identical individuals…” (Caswell, 2009). Individual stochastic-
ity sensu Caswell (2009) manifests itself in the diversity of life-history 
trajectories: Would the same individual be able to live its life a second 
time; the trajectory would be different simply because of sampling 
variation. What causes these different trajectories is at the core of re-
cent studies debating the relative importance of within- and between-
individual variance in life histories, and in particular, whether observed 
variations are selectively neutral or not (Bonnet & Postma, 2016; Cam 
et al., 2016; 2013; Jenouvrier, Péron, & Weimerskirch, 2015; Plard, 
Bonenfant, Delorme, & Gaillard, 2012; Steiner & Tuljapurkar, 2012).

Two mechanisms can explain how variations in individual trajecto-
ries may arise (see Cam et al., 2016 for a review): (1) state dependence 
and (2) heterogeneity. True state dependence sensu Heckman (1981) 
is the process whereby “past experience has a genuine behavioral ef-
fect in the sense that an otherwise identical individual who did not 
experience the event would behave differently in the future than an 
individual who experienced the event.” Although originally framed in 
the context of human behavior, this definition is not restrictive but 
could include other processes (e.g., physiology). An event means the 
realization of a random variable such as successful breeding. State 
dependence describes a Markovian process in which experiencing an 
event affects an individual and changes its propensity to re-experience 
the event. State dependence can generate variation (also known as 
“dynamic heterogeneity”) in a population of identical individuals, 
simply because of sampling variance in the realization of stochastic 
processes such as survival or reproduction (Caswell, 2009; Orzack, 
Steiner, Tuljapurkar, & Thompson, 2011; Steiner & Tuljapurkar, 2012; 
Steiner, Tuljapurkar, & Orzack, 2010; Tuljapurkar, Steiner, & Orzack, 
2009). This sampling variance is a within-individual variance or “indi-
vidual stochasticity” sensu Caswell (2009).

In contrast, the heterogeneity hypothesis starts from the con-
cern that all relevant variables that can affect an individual’s fate 
may not be available to the investigator, either because they are un-
known, difficult to measure or not directly observable (Mood, 2010; 
Wienke, 2010). Assuming this heterogeneity is fixed (time-invariant), 
it is hidden to investigators but may account for the correlation be-
tween states in the life-history trajectory of a given individual. Cam 
et al. (2016) speak of hidden permanent demographic heterogeneity 
(HPDH). HPDH statistically translates into a between-individual vari-
ance due to unobserved differences at the individual level, upon which 
natural selection may act if individual variation is heritable (Chambert, 

Rotella, & Garrott, 2014; Wilson & Nussey, 2010). HPDH is commonly 
estimated with generalized linear mixed models (Bolker et al., 2009) 
or mixture models (Fay, Barbraud, Delord, & Weimerskirch, 2016): It 
corresponds to “individual quality” (Bergeron, Baeta, Pelletier, Réale, 
& Garant, 2011; Cam et al., 2016; Wilson & Nussey, 2010). HPDH 
does not exclude random variation, but relies on statistical models to 
partition the variance in individual trajectories into between-individual 
and within-individual components (Van de Pol & Wright, 2009). Such 
variance-partitioning models have been heavily used, in part because 
they address pseudo-replication when measurements from the same 
individual are still correlated after accounting for observed covariates. 
However, recent studies drew attention to the theoretical implications 
of taking HPDH for granted in the analysis of life-history evolution 
(Orzack et al., 2011; Steiner & Tuljapurkar, 2012; Steiner et al., 2010; 
Tuljapurkar et al., 2009).

Both state dependence and HPDH are concerned with account-
ing for changes in states along an individual’s life-history trajectory. 
With HPDH, any change in state is short lived and an individual quickly 
returns to a trajectory reflecting its latent “quality”. This results in re-
peatability in one state (success or failure) with short-lived visits to the 
other state. With state dependence, change can be more sustained in 
the case of positive state dependence, or short lived in the case of 
negative state dependence (trade-off). In other words, positive state 
dependence leads to some degree of persistence in state, where past 
experience of failure (for example) increases the probability of experi-
encing failure again. This can be illustrated by the “spiral of failure” phe-
nomenon in behavioral ecology, whereby breeding failure is associated 
with increased probabilities of dispersing and divorcing, both being in 
turn associated with increased probability of unsuccessful reproduc-
tion in the following year (Naves, Monnat, & Cam, 2006). The current 
controversy thus revolves around the evolutionary significance of life-
history variations or what drives intra- and interindividual changes in 
life-history outcomes: Is it mostly due to state dependence, HPDH, or 
a combination of both? In other words, what are the relative fractions 
of neutral and potentially non-neutral variations in life histories?

This question motivated the development of a Neutral Theory 
for Life Histories (hereafter NTLH, e.g., Orzack et al., 2011; Steiner & 
Tuljapurkar, 2012; Steiner et al., 2010; Tuljapurkar et al., 2009). NTLH 
studies concluded that the bulk of variations in life histories observed 
in natura across a wide panel of species was selectively neutral, a re-
sult that took empiricists by surprise and called for renewed vigilance 
against adaptationism (Gould & Lewontin, 1979; Pigliucci & Kaplan, 
2000). NTLH investigations take a Markovian model with state depen-
dence as an appropriate null model. This null model is deemed neu-
tral because it does not include HPDH: All individuals are assumed to 
have the same phenotype (Steiner & Tuljapurkar, 2012). Parameters 
of this null model are estimated from data and subsequently used to 
predict the distribution of lifetime reproductive success (LRS). Lifetime 
reproductive success is an individual-level metric: It is the number of 
descendants an individual produces over its reproductive life span, 
conditional on the individual having recruited into the breeding popu-
lation. As a measure of individual fitness, the shortcomings of LRS are 
well known (Metcalf & Parvard, 2007), although this does not prevent 
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its use in practice (e.g. Mourocq et al., 2016). Lifetime reproductive 
success, which was used extensively in testing for the presence of 
HPDH in NTLH studies (Bonnet & Postma, 2016), is scrutinized at the 
population level (Tuljapurkar et al., 2009). If the predicted (population-
level) distribution of LRS matches the observed one, support for 
the NTLH is inferred. Quoting Tuljapurkar et al. (2009): “[State de-
pendence] can provide a ‘neutral’ standard by which one can assess 
whether the observed distribution of fitness components, such as the 
LRS or average annual reproduction, are influenced by certain kinds of 
[HPDH]. In particular, a lack of fit between an observed distribution of, 
say, the LRS and a distribution generated solely by dynamic heteroge-
neity [i.e., state dependence] suggests that the observed distribution 
is influenced by fixed differences among individuals.” This statement is 
normative about the ability and usefulness of LRS to infer HPDH in life 
histories: If a good fit is obtained between the observed distribution of 
LRS and the one predicted from parameter estimates following model 
fitting, then this model is likely to provide a good approximation to the 
true data-generating mechanism.

This statement has, however, not been empirically evaluated. In 
other words, can a data-generating mechanism that involves only 
HPDH predict a population-level LRS distribution that is identical to 
one expected from a data-generating mechanism that involves only 
state dependence? Can the current NTLH methodology lead to model 
misspecification? Model misspecification happens when data are an-
alyzed with, and inferences drawn from a model that is very differ-
ent from the true data-generating mechanism (Burnham & Anderson, 
2002:158). Previous tests of NTLH (e.g., Orzack et al., 2011; Steiner & 
Tuljapurkar, 2012; Steiner et al., 2010; Tuljapurkar et al., 2009) implic-
itly assumed that model misspecification has no impact on parameter 
estimation.

We empirically explore this premise with Monte Carlo simulations, 
using LRS and entropy as in the standard NTLH framework (Tuljapurkar 
et al., 2009). We compare models including no HPDH and no state de-
pendence, state dependence only, HPDH only, and both state depen-
dence and HPDH. Our focus is on accurate estimation of parameters 
in statistical models of life histories: This study thus complements the 
power analysis of Bonnet and Postma (2016). Simulations generate 
data according to a known process, hereafter referred to as the true 
data-generating mechanism. Knowledge of the true value of parame-
ters enabled to assess bias.

2  | ASSUMPTIONS

For data simulation, we made the following assumptions. Individuals 
have recruited into the breeding population and survived to a sec-
ond breeding occasion: The shortest breeding trajectory includes two 
occasions. Once recruited, no individual skips breeding, but there is 
(Bernoulli) variability in breeding success. HPDH can be described by 
a bivariate normal distribution with possible correlation between indi-
vidual survival and breeding success propensities.

We simulated both survival and breeding trajectories to mimic data 
commonly used to investigate HPDH (e.g., Cam, Link, Cooch, Monnat, 

& Danchin, 2002; Cam et al., 2013). Only simulated data on reproduc-
tive life histories were subsequently analyzed, but survival allowed us 
to take into account that reproductive life span is a random variable. We 
chose a mean survival (conditional on having recruited in the breeding 
segment) of � = 0.75 and simulated 1,000 individual life histories of 
maximum length 42. These values were chosen to reflect the biology 
of long-lived iteroparous organisms, such as black-legged kittiwakes 
(Rissa tridactyla) about which conflicting results on NTLH have been 
published (Cam et al., 2013; Steiner et al., 2010). Across simulation 
scenarios, the expected sample size is 1,000 × (1+

∑40

k=0
�k) ≈ 5,000. 

This is a large sample size, both with respect to the number of individ-
ual trajectories, and their length: Asymptotic justifications of statistical 
tests should hold.

3  | NOTATIONS

Greek letters denote the true value of a parameter, which is unknown 
in analyses of empirical data. Greek letters with a hat denote esti-
mated parameters from a model and data. Let survivalit denotes the 
survival of individual i in year t: 

where ��= logit (�)= log(�∕1−�), and � is the average survival prob-
ability. Conditional on survivalit=1, individual i breeds in year t with 
success probability pit: 

where � is an intercept, � is the parameter quantifying state depend-
ence, and (�i,1, �i,2) are individual random effects: 

2 denotes a bivariate normal distribution. The parameters �2� and 
�2
repro

 are variance parameters, and cor is a correlation parameter 
bounded between −1 and 1. The multivariate normal distribution was 
used for convenience as often in empirical investigations (e.g., Authier, 
Cam, & Guinet, 2011; Browne, McCleery, Sheldon, & Pettifor, 2007; 
Cam et al., 2013).

3.1 | Between-individual Variations

Equation 3 reflects the idea of a heterogeneous population: Individuals 
have different phenotypes and can be ranked along a continuous gra-
dient of propensity to survive and breed with success. The parameters 
�� (also known as frailty; Wienke, 2010; Wintrebert, Zwinderman, 
Cam, Pradel, & van Houwelingen, 2005) and �repro quantify HPDH (at 
the population-level) in the survival and breeding processes, respec-
tively. They reflect unmeasured between-individual differences while 
cor is the correlation between individual survival and breeding suc-
cess propensities. A negative correlation corresponds to an individual-
level trade-off between survival and breeding success, while a positive 

(1)survivalit∼Bernoulli(logit−1(��+�i,1))

(2)successit|survivalit∼Bernoulli(pit= logit−1(�+�i,2+�×successi(t−1)))

(3)
(
�i,1

�i,2

)
∼2

(
0

0
,

[
�2
�

cor×��×�repro

cor×��×�repro �2
repro

])
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correlation corresponds to the reverse situation of “individual quality” 
whereby successful breeders survive best (Cam et al., 2002).

3.2 | State dependence

� is the parameter quantifying state dependence, that is the succession 
of 0s (failures) and 1s (successes) in the breeding trajectory. A causal 
interpretation of � follows from Heckman, 1981’s counterfactual defi-
nition: “an otherwise identical individual who did not experience the 
event would behave differently in the future than an individual who 
experienced the event.” If an individual i successfully bred at time  
t −  1, the probability of breeding with success again at time t is:

The counterfactual probability p∗
it
 corresponds to what would be 

the probability of breeding successfully at time t had individual i failed 
at time t − 1: 

Subtracting Equation 5 from Equation 4 yields a general definition 
of �: 

 � is the log odds ratio (OR) of how much having experienced the event 
(successi(t−1)=1) affects the probability of experiencing it again rela-
tive to not having experienced it (successi(t−1)=0). For example, an 
odds ratio of 2 means that a successful breeder is twice more likely to 
breed successfully again compared to a failed one. Likewise, an odds 
ratio of ½ means that a successful breeder is half as likely to breed 
successfully again compared to a failed one. An odds ratio less than 
1 (𝛾 <0) would be evidence of a cost of reproduction, and a trade-off 
between current and future reproduction. The interpretation of � as 
an odds ratio is convenient for simulating realistic amounts of state 
dependence. � is assumed the same for all individuals.

3.3 | Entropy

The transition matrix �i describes how an individual i that survived 
from t−1 to t can change states:

where �11
i
 is the probability of a failed breeder to fail again, �12

i
 is 

the probability of a failed breeder to become successful, �21
i
 is the 

probability of a successful breeder to fail its next breeding attempt, 
and �22

i
 is the probability of a successful breeder to breed success-

fully again.
The average entropy, which measures randomness in transitions 

between states, of the transition matrix �i is: 

where �� = (�1,�2) are the stationary proportions of failures and suc-
cesses along trajectories (Tuljapurkar et al., 2009). Equation 8 can be 
written as: 

that is, 

3.4 | Within-individual Variations

Individual stochasticity sensu Caswell (2009) is a sampling vari-
ance, or within-individual variance in states, here successful ver-
sus failed breeding attempt: “[t]he variance in the [states] is the 
result of luck, not heterogeneity.” For a Bernoulli trial with suc-
cess probability π, the sampling variance in observed outcomes is 
given by the formula �× (1−�). For an average individual i (αi,2 = 0 
in Equation 2), the within-individual variance in breeding success 
(�2

within
) depends on the previous state if true state dependence is 

operating: 

This within-individual variance is different from that of Steiner 
et al. (2010), which refers to variations solely generated by the sto-
chastic nature of the transitions in reproductive stages (page 439). 
The variability studied by Steiner et al. (2010) is defined at the level 
of a trajectory. In practice, the true trajectory that any given indi-
vidual follows is only known up to that individual’s death, which can 
be purely accidental (e.g., an unfortunate lightning strike). Because 
death censors a life-history trajectory, it is impossible to know 
whether any two individuals that had the same trajectory until 
their death would have remained on the same trajectory had they 
both lived longer. It is pragmatically impossible to know whether 
two individuals are truly sharing the same trajectory. The within-
individual variance in Equation 11 is defined at the individual level 
for any time step along a realized trajectory. Because variances are 
additive, the total variance is the sum of all the steps along that 
trajectory.

All the above equations (Equations 1−11) involved parameters 
that are unknown in practice and must be estimated from data. With 
Monte Carlo simulations, the true values of parameters are known: 
Model misspecification and its impact on parameter estimates (e.g., 
bias) can be investigated.

(4)log

(
pit

1−pit

)
=�+�i,2+�

(5)
log

(
p∗
it

1−p∗
it

)
=�+�i,2

(6)� = log

�
pit

1−pit

�
− log

�
p∗
it

1−p∗
it

�
= log

⎛
⎜⎜⎜⎝

pit

1−pit

p∗
it

1−p∗
it

⎞
⎟⎟⎟⎠
= log

�
pit(1−p∗

it
)

p∗
it
(1−pit)

�

(7)�i=

[
�11
i

�12
i

�21
i

�22
i

]
=

[
1−p∗

it
p∗
it

1−pit pit

]

(8)Hi=−�1×
(
�11
i
log�11

i
+�12

i
log�12

i

)
−�2×

(
�21
i
log�21

i
+�22

i
log�22

i

)

(9)

Hi=−
�21
i

�21
i

+�12
i

×
(
�11
i
log�11

i
+�12

i
log�12

i

)

−
�12
i

�21
i

+�12
i

×
(
�21
i
log�21

i
+�22

i
log�22

i

)

(10)

Hi=−
1−pit

1−pit+p∗
it

×
(
(1−p∗

it
)log(1−p∗

it
)+p∗

it
logp∗

it

)

−
p∗
it

1−pit+p∗
it

×
(
(1−pit)log(1−pit)+pitlogpit

)

(11)
�2
within

=

{
pit× (1−pit)=

1

2+e�+�+ e−(�+�)
if successi(t−1)=1;

P∗
it
× (1−p∗

it
)=

1

2+e�+ e−�
if successi(t−1)=0.
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4  | MONTE CARLO TUDY

4.1 | Data simulation

We simulated life histories under several scenarios correspond-
ing to different values for the set of 4 parameters (� , ��, �repro, cor).  
We considered data-generating mechanisms with only HPDH 
(� =0, ��≠0, �repro≠0), only state dependence (� ≠0, ��=0, �repro=0),  
and with none or both (Table 1). There were 7 × 4 × 4 × 5 = 560 dif-
ferent combinations of values for (� , ��, �repro, cor). For each combina-
tion, 500 random datasets were simulated and analyzed (Appendix S2: 
Fig. S1-S2). In all simulation scenarios, the parameter μ was set to 0, 
corresponding to an average breeding success probability of 0.5.

4.2 | Model fitting

To keep the problem tractable, mean survival was kept constant 
throughout life in simulations. Furthermore, we only analyzed breed-
ing trajectories: Observed reproductive life span was treated as data. 
In other words, although the true data-generating mechanism is a 
joint model of breeding success and survival, only data on breeding 
success were analyzed with probabilistic models (Table 2). Models 
were fitted with software R v.3.2.3 (R Development Core Team, 
2015) using the function glmer from the library lme4 (Bates, Maechler, 
Bolker, & Walker, 2013) on a HP Compaq LA2306x desktop (Intel 
(R), Xeon (R) CPU E5-2630, 2.30 GHZ, 32 Go RAM). We specified 5 
quadrature points for the adaptive Gauss–Hermite approximation to 
the log-likelihood for accurate random effect estimation (Lesaffre & 
Spiessens, 2001).

4.3 | Inference

Our aims were to assess the empirical validity of the current NTLH 
framework to draw inferences about the processes generating varia-
tion in life histories. For each fitted model, estimated parameters were 
used to predict individual LRS conditional on the observed survival 
trajectory. To quantify the discrepancy between the predicted and 
observed distribution of LRS, Kolmogorov–Smirnov tests have been 
used in previous studies of NTLH, but were found underpowered 
(Bonnet & Postma, 2016). We used the Earth Mover Distance to com-
pare two histograms or distributions. Each histogram may be viewed 

as a pile of sand and the Earth Mover Distance reflects the amount of 
sand multiplied by the distance needed to turn one pile into the other 
(Gottschlich & Schuhmacher, 2014). A smaller Earth Mover Distance 
reflects a better match between predictions and observations.

For each dataset and fitted model, estimated parameters (�̂,̂� ,�̂repro) 
were stored to assess bias and to compute individual stochasticity and 
the scaled entropy. Entropy is a measure of randomness in transitions 
between breeding success and failure (Tuljapurkar et al., 2009). The 
scaled entropy varies between 0 and 1, with 1 corresponding to com-
plete randomness in the succession of states in the trajectory. It has 
been argued that HPDH should decrease entropy (Bonnet & Postma, 
2016; Jenouvrier et al., 2015; Tuljapurkar et al., 2009) and that en-
tropy could thus be used to infer the presence of HPDH. We used 
estimated parameters (�̂,̂�) to compute the within-individual variance 
�̂2
within

for the breeding trajectory 01. Since variances are additive, the 
total variance is the sum the rightmost terms in Equation 11. The 
estimated within-individual variance term was compared to its true 
value for each simulation scenario to assess bias, that is whether 
�2
within

= �̂2
within

 or not.
Finally, the log-likelihood of each simulated dataset under each 

model (Table 2) was recorded to compute the Bayesian information 
criteria (BIC; Link & Barker, 2009). BIC weights 

(
�̂BIC

)
 were then cal-

culated assuming that random individual effects count for 1 additional 
(variance) parameter. We used BIC rather than Akaike information cri-
terion (AIC) because the later tends to favor overcomplex models in 
large data sets (chapter 7 in Link & Barker, 2009). Results were quali-
tatively similar with AIC (Appendix S3).

For legibility, only results for scenarios where there was no 
individual-level correlation in HPDH (cor = 0) are presented 
below. These results are qualitatively the same for other scenarios 
(Appendix S3).

Parameter

State dependence (OR scale) Heterogeneity Correlation

eγ σϕ σrepro cor

None 1 0.01 0.01 0.0

Small (3/4, 4/3) 0.33 0.33

Moderate (3/5, 5/3) 0.66 0.66 ±0.3

Large (1/2, 2/1) 1.00 1.00 ±0.6

The magnitude of true state dependence is given on an odd ratio (OR) scale: Values above 1 (below 1) 
correspond to positive (negative) effects of previous state on current state. In the scenario with no 
heterogeneity, a negligible value of HPDH (0.01) was used to avoid numerical errors when simulating 
random effects from a bivariate normal distribution (Equation 3) and when computing the relative bias.

TABLE  1 Summary of parameter values 
used in simulations of life history data

TABLE  2 Models for analyzing breeding trajectories. �∗
i
 is an 

individual univariate random effect because only breeding success 
was analyzed at this stage.

nil successit∼Bernoulli(logit−1(�)

NTLH successit∼Bernoulli(logit−1(�+�×successi(t−1))

HPDH successit∼Bernoulli(logit−1(�+�∗
i
)

full successit∼Bernoulli(logit−1(�+�×successi(t−1)+�∗
i
)
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5  | RESULTS

Figure 1 summarizes results with the Earth Mover Distance: 
Irrespective of the true data-generating mechanism, all fitted models 
could predict the observed population-level distribution of LRS in a 
similar manner. Exceptions were for models nil and NTLH (that is 
models excluding HPDH) whose Earth Mover Distance was the great-
est in scenarios with small to large true HPDH. This distance was fur-
ther increased with increased value of true positive state dependence 
(eγ > 1) and increased value of the individual-level correlation in HPDH 
(Appendix S3: Fig. S1). In scenarios with both state dependence and 
HPDH, model HPDH had the smallest distance, even though it was 
not the true data-generating mechanism. In other words, a misspeci-
fied model could outperform the true model at predicting a LRS distri-
bution that was most similar to the observed one.

Figure 2 summarizes results with respect to scaled entropy: 
Irrespective of the true data-generating mechanism, parameter esti-
mates from the different fitted models could result in a similar scaled 
entropy. Exceptions were for model NTLH, for which the computed 
scaled entropy was the smallest in scenarios with both large true HPDH 
and large, positive, true positive state dependence (eγ > 1). Scaled en-
tropy further decreased with increased value of the individual-level 

correlation in HPDH (Appendix S3: Fig. S2). This behavior was also ap-
parent for models HPDH and full although the ranking was invariable 
with the smallest, intermediate, and largest scaled entropy for NTLH, 
full and HPDH, respectively. All models, whether they included state 
dependence, heterogeneity, or excluded them both, could generate 
similar values of scaled entropy: Scaled entropy was insensitive to the 
true data-generating mechanism (Appendix S3: Fig. S2).

Figure 3 shows the bias in estimated state dependence (�̂). When 
data were analyzed with a correctly specified model, state depen-
dence estimates were on average unbiased. However, when data 
were analyzed with a different model than the true data-generating 
mechanism, estimates from all models other than full were biased. In 
particular, estimates from model NTLH were always positively biased 
when HPDH was present in the data (Appendix S3: Fig. S3). Even in 
scenarios where true state dependence was nil (eγ = 1), estimates from 
model NTLH were positively biased, with the magnitude of the bias 
depending only on the magnitude of true HPDH (Appendix S3: Fig. 
S3).

Figure 4 shows the bias in estimated HPDH ̂�repro. When data were 
analyzed with a correctly specified model, HPDH estimates were on 
average unbiased. However, when data were analyzed with a different 
model than the true data-generating mechanism, estimates were in 

F IGURE  1 Tile-plots of the average estimated Earth Mover Distance (across 500 simulated datasets) between the observed and predicted 
distribution of LRS for each simulation scenario. True values of state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− 
and y− axes, respectively. Each panel corresponds to one of the four models used to analyze data. Vertical black lines bracket scenarios in which 
heterogeneity (HPDH) is the true data-generating mechanism. Horizontal black lines bracket scenarios in which state dependence (NTLH) is 
the true data-generating mechanism. At the intersection, nil is the true data-generating mechanism. Everywhere else, full is the true data-
generating mechanism. The true data-generating model should have the smallest Earth Mover Distance. Actual values (rounded to the nearest 
integer) are displayed on each tile
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general biased. In particular, estimates from model HPDH were al-
ways biased when data were generated with true state dependence 
(Appendix S3: Fig. S4). In scenarios where true HPDH was nil (�repro=0),  
estimates from model HPDH or full were positively biased. In sce-
narios where both state dependence and HPDH were truly present, 
estimates from model HPDH were always biased with the sign and 
severity of the bias depending on the sign and magnitude of true state 
dependence (Appendix S3: Fig. S4).

Results with respect to within-individual variance estimation, 
or individual stochasticity sensu Caswell (2009), are summarized in 
Figure 5. When data were analyzed with a correctly specified model, 
individual stochasticity estimates were on average unbiased. The 
only exception was in scenarios with both HPDH and state depen-
dence: Estimates from model full were slightly biased with the bias 
depending on the individual-level correlation cor (Appendix S3: Fig. 
S5). When data were analyzed with a different model than the true 
data-generating mechanism, estimates were in general biased. In par-
ticular, estimates from model NTLH were always biased when HPDH 
was present in the data. Likewise, estimates from model HPDH were 
biased when state dependence was present in the data.

Inference with BIC is summarized in Figure 6. Across all the scenar-
ios, the information theoretic approach was able to identify the correct 
data-generating mechanism among the competing models. Although 
a small amount of HPDH or state dependence were more difficult to 

detect with certainty, �̂BIC were always the largest for the true data-
generating mechanism: Using BIC in a multimodel framework avoided 
the problems linked to model misspecification detailed in Figures 1–5 
above (see also Appendix S3: Figs S6 and S7).

6  | DISCUSSION

6.1 | Inference with misspecified models

An important methodological choice in evolutionary ecology is that of 
an appropriate null model (Pigliucci & Kaplan, 2006; chapter 10). With 
simulations, we investigated whether the observed distribution of LRS 
could reflect unambiguously the action of state dependence, HPDH, or 
both on life-history trajectories. Using the Earth Mover Distance, we 
found that the true data-generating mechanism was not necessarily 
the one that predicted best LRS. LRS predictions from a model includ-
ing only state dependence or HPDH could be closer to the observed 
distribution of LRS, even though the true data-generating mechanism 
involved both state dependence and HPDH. The ability of statistical 
models to predict well the population-level distribution of LRS tells lit-
tle about the true data-generating mechanism at the individual level. 
Excellent predictive ability may result from biased estimates (Shmuéli, 
2010), which may have plagued previous studies. Biased estimates do 
not allow accurate inferences on whether variability across individual 

F IGURE  2 Tile-plots of the average estimated scaled entropy (across 500 simulated datasets) in each simulation scenario. True values of 
state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− and y− axes, respectively. Each panel corresponds to one of the 
four models used to analyze data. Vertical black lines bracket scenarios in which HPDH is the true data-generating mechanism. Horizontal black 
lines bracket scenarios in which NTLH is the true data-generating mechanism. At the intersection, nil is the true data-generating mechanism. 
Everywhere else, full is the true data-generating mechanism. Actual values (rounded to the nearest integer) are displayed on each tile
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life histories is generated by chance alone or not. That is, they do not 
allow inferring whether there are unobserved individual features on 
which natural selection may act provided that the necessary condi-
tions are met (Fox, Roff, & Fairbairn, 2001). With that goal in mind, 
a model’s ability to predict the observed distribution of LRS is not 
sufficient; the selected model has to provide more than population-
level predictions, it has to be the one that reflects best the biological 
processes that gave rise to the data at the individual level (Cam et al., 
2016).

We investigated the use of scaled entropy as a summary statistic 
for inference about the processes generating variation in life-history 
trajectories. Entropy is a measure of randomness in transitions be-
tween states in a sequence: It measures uncertainty in predicting the 
next state (Adami, 2016). State dependence by definition (for a first 
order Markovian process) assumes that the realization of the random 
variable “breeding success” in year t + 1 is predictable from knowl-
edge of state at t. Hence, a decrease in scaled entropy is expected 
if estimated state dependence is non-nil (�̂ ≠0). Consequently, scaled 
entropy was smallest for NTLH when the bias in (�̂ ) was largest. In 
populations with HPDH, important individual-level covariates are as-
sumed to influence transitions among states, but these covariates are 
unobserved. Their effect is subsumed into an individual-level random 

effect. As a result, transitions are difficult to predict for a randomly 
chosen individual in the population, since important information on 
this individual is missing to begin with. Consequently, the scaled en-
tropy computed from parameters estimated with a model with only 
HPDH was always the largest. Finally, scaled entropy was intermediate 
for the model incorporating both state dependence and HPDH. Across 
the different scenarios, parameter estimates from this model were un-
biased and allowed accurate computation of the scaled entropy. The 
latter cannot be used for inference about the true data-generating 
process because its computation is conditional on the model used 
being correctly specified: Entropy cannot tell whether a model pro-
vides a good fit or not to a given dataset.

Model misspecification seriously limits the usefulness of a null 
model in life-history studies: Because parameter estimates can be bi-
ased, testing whether they are nil or not is moot. Besides, there are 
statistical hurdles involved in the direct comparison of NTLH, HPDH,  
and full. Both HPDH and NTLH are simpler versions of full, but the 
direct comparison of NTLH, which is a generalized linear model, and 
of HPDH, which is a generalized linear mixed model, can be involved 
(Appendix S4). Our results showed that standard information theoretic 
tools such as �̂BIC (Link & Barker, 2009) or �̂AIC (Burnham & Anderson, 
2002; Burnham & White, 2002) could be used to identify a model 

F IGURE  3 Tile-plots of the average bias in estimated state dependence �̂  (across 500 simulated datasets) for each simulation scenario. True 
values of state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− and y− axes, respectively. Each panel corresponds 
to one of the four models used to analyze data. Vertical black lines bracket scenarios in which HPDH is the true data-generating mechanism. 
Because HPDH excludes γ, estimates (�̂ ) are by definition exactly 0. Horizontal black lines bracket scenarios in which NTLH is the true data-
generating mechanism. At the intersection, nil is the true data-generating mechanism. Everywhere else, full is the true data-generating 
mechanism. Estimates from the true data-generating model should have no bias on average. Actual bias values (rounded to the nearest integer) 
are displayed on each tile. Biases larger than 100% in magnitude were capped at 100%
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specification that best approximated the correct data-generating 
mechanism. Our simulations were carried out with both a large num-
ber of individuals and a large reproductive life span in order to allow 
asymptotic justifications to hold. In practice, sample size may be small 
and asymptotic justifications may not hold. To achieve correct model 
specification, it is paramount to consider a set of candidate models 
simultaneously to assess their fit, and not to rely on LRS prediction 
or entropy computation for inferring the true data-generating mecha-
nism driving the intra- and interindividual dynamics of change among 
states in life-history trajectories.

6.2  | TESTING DEMOGRAPHIC 
HETEROGENEITY IN PRACTICE

State dependence and HPDH can both drive the dynamics of change 
among states in individual life histories. When both processes were 
operating, models ignoring state dependence resulted in overesti-
mating HPDH. Likewise, ignoring HPDH resulted in overestimating 
state dependence, a result unanticipated by previous methods used 
to test NTLH. This statistical bias occurred because past state is a 
random variable: Treating it as fixed when put in the right-hand side 

of Equation 2 introduces endogeneity (Hsiao, 2014). Endogeneity is a 
special case of omitted variable bias, in which the bias arises because 
one of the variables used to explain the other is itself caused by the 
phenomenon it seeks to explain. Because it can itself be the result 
of unobserved HPDH, past state acts as a proxy for “individual qual-
ity”, resulting in spurious state dependence (Hsiao, 2014). As a result 
of spurious state dependence, individual stochasticity sensu Caswell 
(2009) was underestimated when data with true HPDH were ana-
lyzed with a model including only state dependence (Figure 5). When 
data with both true HPDH and true state dependence are analyzed 
with the misspecified model NTLH, estimated state dependence is 
exaggerated and individual stochasticity underestimated (when true 
state dependence is positive) or overestimated (when true state de-
pendence is negative). In other words, the current NTLH framework 
may lead to infer too much or too little stochastic variability in life 
histories (i.e., individual stochasticity sensu Caswell, 2009) than there 
really is.

We focused on the variance in states along a trajectory to define 
both a within-  and between-individual component, which is consis-
tent with previous investigations focusing on HPDH (Cam et al., 2002; 
Chambert et al., 2014). In contrast, previous studies of the NTLH 
defined a within-  and a between-trajectory variance, which is only 

F IGURE  4 Tile-plots of the average bias in estimated HPDH �̂repro (across 500 simulated datasets) for each simulation scenario. True values 
of state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− and y− axes, respectively. Each panel corresponds to one of 
the four models used to analyze data. Vertical black lines bracket scenarios in which HPDH is the true data-generating mechanism. Horizontal 
black lines bracket scenarios in which NTLH is the true data-generating mechanism. Because NTLH excludes σrepro, estimates (�̂repro) are 
by definition exactly 0. At the intersection, nil is the true data-generating mechanism. Everywhere else, full is the true data-generating 
mechanism. Estimates from the true data-generating model should have no bias on average. Actual bias values (rounded to the nearest integer) 
are displayed on each tile. Biases larger than 100% in magnitude were capped at 100%
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accessible via simulations (Steiner et al., 2010). These simulations 
emulate variations due to death of individuals sharing the same tra-
jectory, the latter being an assumption since it is defined a priori, in-
dependently of time of death. In fact, it is impossible to know whether 
any two individuals are truly sharing the same trajectory. Moreover, 
simulations depend on the model which was used to estimate the 
required parameters. Importantly, these simulations assume that the 
model specification is correct and cannot diagnose any statistical 
bias since there is no model-independent measure of the within- and 
between-trajectory variances. Any bias in estimated parameters will 
necessarily trickle down in simulations that are conditional on un-
known parameters estimated from empirical data. It is paramount to 
address the potential problem of model misspecification, and the re-
sulting biased estimates, if reliable inferences on life-history evolution 
are to be drawn from such simulations.

Because of estimation biases, the neutral model fits many lon-
gitudinal life-history datasets and mirrors the situation observed in 
community ecology, where neutral models were found to successfully 
predict species abundance distributions (SAD). It was later shown that 
predicting SAD did not provide robust support for the Neutral Theory 
of Biodiversity (Chave, 2008): Both neutral and non-neutral models 
can predict the same pattern (Chave, Muller-Landau, & Levin, 2002). 

Using data on American college basket-ball competition recasted 
as SAD, Warren II et al. (2011) showed that neutral models of com-
munity ecology could very well predict the patterns in these data: A 
non-neutral process at a microlevel can generate a seemingly neutral 
pattern at a macrolevel. Similarly, we demonstrate here that in the cur-
rent NTLH framework, predicting LRS distributions does not provide 
robust evidence of neutrality.

6.3  | OLD WINE IN NEW BOTTLES

The problem of biased estimates has been diagnosed more than 30 
years ago by econometricians (Heckman, 1981): “misspecification 
of the heterogeneity process gives rise to an erroneous estimate 
of the impact of the true effect of past state on current outcome.” 
Econometricians now always consider a model with both state de-
pendence and unobserved heterogeneity (e.g., Arulampalam, Booth, 
& Taylor, 2000; Bartels, Box-Steffensmeier, Smidt, & Smith, 2011; 
Halliday, 2008; Hsiao, 2014) to avoid mis-estimating either. In sce-
narios where true state dependence γ was negative, consistent with 
a trade-off between current and future reproduction, estimated state 
dependence �̂  could be positive. The bias was always positive and 

F IGURE  5 Tile-plots of the average bias in estimated within-individual variance (�̂2
within

) for a 01 trajectory in breeding success of an average 
individual for each simulation scenario. True values of state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− and y− axes 
respectively. Each panel corresponds to one of the four models used to analyze data. Vertical black lines bracket scenarios in which HPDH is 
the true data-generating mechanism. Horizontal black lines bracket scenarios in which NTLH is the true data-generating mechanism. At the 
intersection, nil is the true data-generating mechanism. Everywhere else, full is the true data-generating mechanism. Estimates from the true 
data-generating model should have no bias on average. Since variances are additive, any bias can blow up with the large sample considered in 
our simulations of a panel of 1,000 individuals. Actual bias values (rounded to the nearest integer) are displayed on each tile
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resulted from model misspecification when HPDH was in fact pre-
sent in the data, but ignored in the analysis. This systematic positive 
bias may have contributed to the elusiveness of trade-offs in empiri-
cal studies: Overestimating the magnitude (Type-M error) of state de-
pendence can further lead to a sign error (Type-S error; Gelman & 
Tuerlinckx, 2000). To ignore HPDH, a priori can be detrimental to the 
study of trade-offs in wild populations.

Negative state dependence is classically interpreted as a cost of 
reproduction, which can hardly be considered a neutral process with 
respect to natural selection (Flatt & Heyland, 2011). As Munoz and 
Huneman (2016) underscored in the context of the Neutral Theory 
of Biodiversity, “one can have neutral patterns with non-neutral 
processes”. The current formulation of NTLH may obfuscate the dif-
ference between patterns and processes. While the realization of 
stochastic processes governed by state dependence creates variation 
among individual trajectories that may be evolutionary neutral, the 
biological and evolutionary processes at the origin of state depen-
dence need not themselves be neutral. Consequently, it is necessary 
to clarify why the state dependence model sensu (Heckman, 1981), 
which also underpins population projection matrix models (Caswell, 
2001; Lefkovitch, 1965), is an evolutionary neutral model of life-
history evolution. NTLH requires a philosophical clarification like the 
one Munoz and Huneman (2016) recently provided for the Neutral 

Theory of Biodiversity. Although beyond the scope of this study, we 
offer some thoughts below, focusing on what neutrality means in life-
history studies.

6.4  | NEUTRALITY IN LIFE-
HISTORY STUDIES

Trade-offs between life-history traits are commonly understood as 
allocation constraints acting on the development and physiology 
of organisms. They are a cornerstone of evolutionary biology (Roff, 
Mostowy, & Fairbairn, 2002) and translate into negative state de-
pendence in statistical models (Nichols, Hines, Pollock, Hinz, & Link, 
1994). Evidencing trade-offs in natural populations has proven a dif-
ficult endeavor in spite of clear and straightforward theoretical ex-
pectations about their existence (Metcalf, 2016; Morano, Stewart, 
Sedinger, Nicolai, & Vavra, 2013; Reznick et al., 2000). In evolutionary 
biology, few researchers would equate a trade-off between current 
reproduction or future survival as evidence of neutrality. Yet NTLH 
holds that neutrality in life histories stems from state dependence 
that is the effect of previous state on current state. In fact, in its cur-
rent formulation, NTLH provides a model that is more parsimonious 
than neutral (Munoz & Huneman, 2016): Parsimony is enacted by the 

F IGURE  6 Tile-plots of the mean estimated 
(
�̂BIC

)
 (across 500 simulated datasets) for each model and each simulation scenario. True values 

of state dependence (eγ on the Odds-Ratio scale) and HPDH (σrepro) are on the x− and y− axes, respectively. Each panel corresponds to one of 
the four models used to analyze data. Vertical black lines bracket scenarios in which HPDH is the true data-generating mechanism. Horizontal 
black lines bracket scenarios in which NTLH is the true data-generating mechanism. At the intersection, nil is the true data-generating 
mechanism. Everywhere else, full is the true data-generating mechanism. The best predictive model, which would be selected for inference, 
has the largest weight. Actual values (rounded to one decimal) are displayed on each tile
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nullification of the heterogeneity (variance) parameter. However, it 
is unclear why it is more appropriate to nullify this parameter, rather 
than the state dependence parameter in the first place. HPDH af-
fects in no small way the interpretation of logistic regression output, 
and ignoring it a priori is not recommended (Mood, 2010). Moreover, 
NTLH is agnostic to the sign of state dependence: There is no spe-
cific prediction about whether positive or negative state dependence 
should be expected in a given context, nor whether its magnitude 
can fluctuate. Trade-offs are expected to be expressed most acutely 
when conditions are harsh or competition is strong (van Noordwijk & 
de Jong, 1986) and should be considered context-dependent rather 
than static (Roff et al., 2002).

An analogy to two other disciplines, namely population genet-
ics and community ecology, was called upon to promote consider-
ation of nonselective mechanisms in life-history studies (Steiner & 
Tuljapurkar, 2012). The underlying motivation was to avoid an auto-
matic presumption of adaptationism (Gould & Lewontin, 1979) that 
could flourish under the label of “individual quality” (Bergeron et al., 
2011; Steiner & Tuljapurkar, 2012). As a result, NTLH was developed 
to provide a baseline model that could be used as a working null hy-
pothesis for empiricists (Steiner & Tuljapurkar, 2012). However, in 
contrast to population genetics or community ecology (Chave, 2008; 
Leigh, 2007), NTLH has not been seized upon by empiricists. This 
state of affairs calls for an in-depth investigation into the limits of 
drawing analogies between different disciplines developing neutral 
theories and using null models.

In NLTH, neutrality is deduced not because there are no biolog-
ical differences between individuals, but because these differences 
are deemed fitness-irrelevant. The latter conclusion is reached when 
a state dependence statistical model can predict well the population-
level distribution of LRS without assuming between-individual differ-
ences (heterogeneity) in vital rates beyond the usual differences in 
age- and stage-structured populations. LRS plays the same role as al-
lele frequencies in population genetics, or SAD in community ecology. 
In the latter two disciplines, the emphasis is on accounting for tempo-
ral changes in the population-level distribution of allele frequencies 
and community-level SAD (Chave, 2008), respectively. In both popula-
tion genetics and community ecology, a microlevel process stemming 
from the finite size of populations, drift, can induce random change in 
the distribution of a macrolevel statistic (allele frequency or SAD). In 
NTLH, state dependence provides a mechanism to explain change in 
states within an individual life-history, but does not necessarily explain 
change in the population-level LRS distribution over time. Support for 
NTLH was claimed from predicting accurately the LRS distribution at a 
specific time point, not from accounting for a change over time in that 
distribution. While change in the magnitude or sign of state depen-
dence can generate different LRS distribution (Appendix S2), the cur-
rent emphasis of NTLH is not on the origin, the sign, or the magnitude 
of the state dependence parameter. These blind spots call for further 
theoretical elaborations of NTLH and renewed attention on the focus 
of tests of NTLH: predicting from individual/microlevel processes (i) 
the population/macrolevel LRS distribution at a specific time point, or 
(ii) changes in that distribution over time.

7  | CONCLUSION

Researchers interested in the evolutionary significance of interindi-
vidual variations in longitudinal trajectories should not use LRS or 
entropy to infer the correct data-generating mechanism behind life 
histories. Neither LRS prediction nor entropy estimation can diagnose 
model misspecification. NTLH studies (e.g., Tuljapurkar et al., 2009) 
should be re-evaluated with standard inferential tools, such as in-
formation criteria. In theory, the latter can be used to compare and 
accurately select a model accounting for the data-generating mecha-
nisms behind longitudinal life-history data. Although with real data 
collected on wild populations the true data-generating mechanism is, 
in general, unknown and out of reach (Burnham & Anderson, 2004; 
Link & Barker, 2009), investigators should start from a set of statisti-
cal models reflecting a complete set of nonmutually exclusive hypoth-
eses (including alternative biological and evolutionary scenarios) on 
individual life-history evolution (Browne et al., 2007; Cam et al., 2013; 
Chambert, Rotella, & Higgs, 2014; 2013). Then, they should proceed 
with a multihypothesis framework (Chamberlin, 1965) based on infor-
mation theoretic inferential tools (BIC, AIC, or analogs in the Bayesian 
framework; Gelman, Hwang, & Vehtari, 2014; Link & Barker, 2009). 
These criteria allow determining a model whose complexity (e.g., 
non-Gaussian HPDH, second-order Markovian state dependence) is 
supported by the data at hand (Burnham & Anderson, 2004; Link & 
Barker, 2009), comparing non-nested models and assessing the rela-
tive importance of heterogeneity and state dependence in individual 
life-history evolution.
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