731 research outputs found

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Caractérisation de pseudo CT générés à partir d'images IRM à l'aide de méthodes deep learning : application aux tumeurs cérébrales traitées par radiothérapie

    No full text
    De nos jours, les traitements de tumeurs cĂ©rĂ©brales par radiothĂ©rapie nĂ©cessitent l’acquisition d’un scanner utilisĂ© pendant les Ă©tapes de segmentation et de dosimĂ©trie, ainsi que d’une Imagerie par RĂ©sonance MagnĂ©tique (IRM) jouant un rĂŽle important durant l’étape de segmentation des volumes cibles en particulier. Cependant, cette double modalitĂ© implique de recaler spatialement les images, processus qui induit des erreurs de 2mm, actuellement prises en compte par une augmentation de marges. Ainsi, gĂ©nĂ©rer des pseudo scanners (pCT) Ă  partir d’images IRM apparaĂźt comme Ă©tant une solution attractive pour diminuer les marges et rĂ©duire l’irradiation des tissus sains pĂ©riphĂ©riques. La premiĂšre Ă©tape de cette thĂšse avait pour but de caractĂ©riser les paramĂštres jouant un rĂŽle clĂ© dans la qualitĂ© de pCT gĂ©nĂ©rĂ©s par Deep Learning (DL), Ă  savoir la taille de la cohorte d’entrainement, la sĂ©quence IRM utilisĂ©e en entrĂ©e du rĂ©seau, la technique de standardisation des images IRM, le filtre de correction d’inhomogĂ©nĂ©itĂ©s de champ et l’architecture du rĂ©seau. Pour ce faire, une large cohorte composĂ©e de plus de 400 patients a Ă©tĂ© constituĂ©e, rassemblant des images de multiples appareils d’IRM et localisations tumorales, afin d’assurer la robustesse du modĂšle. Les pCT obtenus ont tout d’abord Ă©tĂ© Ă©valuĂ©s Ă  l’aide de l’erreur absolue moyenne, basĂ©e sur les intensitĂ©s. Des analyses dosimĂ©triques ont ensuite Ă©tĂ© menĂ©es. Toutes les approches Ă©tudiĂ©es ont atteint des performances dosimĂ©triques Ă©quivalentes, exceptĂ© pour la taille du jeu d’entrainement. Pour introduire une dosimĂ©trie basĂ©e sur les pCT en pratique clinique et dĂ©ployer une mĂ©thodologie de validation de la non-infĂ©rioritĂ© de la planification de traitement dans le cas d’une radiothĂ©rapie basĂ©e seulement sur IRM comparĂ©e Ă  celle conventionnellement basĂ©e sur scanner, une deuxiĂšme Ă©tude visant Ă  dĂ©finir les mĂ©triques dosimĂ©triques les plus adaptĂ©es Ă  une Ă©valuation de pCT sans biais a Ă©tĂ© rĂ©alisĂ©e. Leurs corrĂ©lations avec des mĂ©triques basĂ©es sur les intensitĂ©s ont Ă©tĂ© calculĂ©es. Enfin, l’impact de scenarios simulant des erreurs extrĂȘmes de pCT a Ă©tĂ© quantifiĂ©, basĂ© sur les mĂ©triques optimales prĂ©alablement dĂ©finies. Un nouveau jeu de test de 71 patients a Ă©tĂ© constituĂ©, reflĂ©tant les localisations tumorales rencontrĂ©es en clinique et les modalitĂ©s de traitement propres Ă  notre centre. Les gamma index globaux et locaux pour le critĂšre 1%/1mm associĂ©s Ă  des seuils de dose non-extrĂȘmes ont montrĂ© leur pertinence pour la tĂąche d’évaluation de pCT cĂ©rĂ©braux. De plus, les diffĂ©rences de mĂ©triques issues des histogrammes dose/volume des volumes cibles et organes Ă  risque doivent aussi ĂȘtre calculĂ©es car elles reflĂštent la performance dosimĂ©trique du pCT pour chaque structure segmentĂ©e. Enfin, la gĂ©nĂ©ration de pCT a Ă©tĂ© appliquĂ©e Ă  la radiothĂ©rapie basĂ©e sur protons, grĂące Ă  une collaboration avec le Centre de ProtonthĂ©rapie d’Orsay. Le modĂšle de DL prĂ©alablement dĂ©veloppĂ© sur des patients adultes a Ă©tĂ© testĂ© sur des patients pĂ©diatriques, afin d’évaluer sa gĂ©nĂ©ralisabilitĂ©. Des performances cliniques satisfaisantes ont Ă©tĂ© atteintes, exceptĂ© pour quelques patients, pouvant potentiellement prouver la transfĂ©rabilitĂ© du modĂšle Ă©valuĂ©. Les travaux futurs comprennent une Ă©valuation dosimĂ©trique Ă  plus grande Ă©chelle, avec la composition d’une cohorte de 198 enfants reprĂ©sentant 4 histologies diffĂ©rentes. Le but est de dĂ©terminer l’approche d’entrainement et de validation du rĂ©seau la plus efficace Ă  l’aide de cartes de pouvoirs d’arrĂȘt pour s’affranchir de l’influence des paramĂštres des scanners sur les images. Ainsi, une solide comprĂ©hension des points clĂ©s de la gĂ©nĂ©ration de pCT ainsi qu’une mĂ©thodologie de leur caractĂ©risation ont Ă©tĂ© rĂ©alisĂ©es. Les recommandations en dĂ©coulant ont le rĂŽle clĂ© de faciliter la quantification et l’interprĂ©tation de critĂšres d’évaluation de la qualitĂ© de pCT dans le contexte de mise en place d’essais cliniques, tel que l’essai observationnel en cours GliopCT.Current brain tumor radiotherapy treatments require the acquisition of a Computed Tomography (CT) used during the segmentation and dosimetry steps, and a Magnetic Resonance Imaging (MRI) being mostly important for the target volumes delineation. Yet, dealing with multiple modalities implies to spatially register them, which has been shown to include 2mm errors (Ulin et al.), currently considered with a margin increase. Thus, generating pseudo Computed Tomography (pCT) from MRI appears to be an appealing approach to reduce margins and surrounding healthy tissues irradiation. The first step of the thesis aimed at characterizing parameters playing a key role in the Deep Learning (DL)-derived pCT quality, namely the training set size, the MRI sequence used as network input, the MRI standardization approach, the bias field correction filter and the network architecture. To do so, a large cohort composed of more than 400 patients was constituted, gathering images from multiple MR devices and tumor locations, to ensure the model robustness. The obtained pCT were first evaluated via the mean absolute error, based on intensities. Further dosimetry analyses were performed. Except for the training set size, all the studied approaches led to equivalent dosimetry performances. With the goal to introduce pCT-based dosimetry in clinical practice and to deploy a methodology to validate the non-inferiority of MRI-only based-radiotherapy treatment planning compared to conventional CT-based radiotherapy treatment planning, a second study aiming at assessing the best-suited dosimetry criteria for an unbiased pCT evaluation was performed. Their correlations with intensity-based metrics were also calculated. Lastly, the impact of scenarios simulating extreme errors pCT was quantified, based on the previously defined metrics. A new test set of 71 brain patients was constituted reflecting tumor locations encountered in clinics and treatment modalities used in our center. Global and local 1%/1mm gamma indices with non-extreme dose thresholds were proved to be relevant for the brain pCT task evaluation. Additionally, dose volume histograms-based metrics differences for target and organs at risk volumes should also be computed since they reflect delineated structure-wise pCT dosimetry performance. Lastly, pCT generation was applied to proton-based radiotherapy, via a collaboration with the Centre de ProtonthĂ©rapie d’Orsay. The previously developed adults DL-model was tested on paediatrics to assess its generalizability. Satisfying clinical performances were reached, except for a few patients, potentially suggesting the transferability of the evaluated model. Future work consists in a dosimetry analysis in a larger scale, with the composition of a cohort of 198 children representing 4 different histologies. The goal is to assess the most efficient network training and validation approach, with stopping power maps to ensure the non-influence of CT devices parameters on images. Thus, a solid understanding of key points for pCT generation and a methodology for pCT characterization have been achieved. The resulting recommendations have the key role to facilitate the quantification and interpretation of pCT quality evaluation criteria in the context of clinical trials set up, such as the ongoing observational GliopCT

    Caractérisation de pseudo CT générés à partir d'images IRM à l'aide de méthodes deep learning : application aux tumeurs cérébrales traitées par radiothérapie

    No full text
    Current brain tumor radiotherapy treatments require the acquisition of a Computed Tomography (CT) used during the segmentation and dosimetry steps, and a Magnetic Resonance Imaging (MRI) being mostly important for the target volumes delineation. Yet, dealing with multiple modalities implies to spatially register them, which has been shown to include 2mm errors (Ulin et al.), currently considered with a margin increase. Thus, generating pseudo Computed Tomography (pCT) from MRI appears to be an appealing approach to reduce margins and surrounding healthy tissues irradiation. The first step of the thesis aimed at characterizing parameters playing a key role in the Deep Learning (DL)-derived pCT quality, namely the training set size, the MRI sequence used as network input, the MRI standardization approach, the bias field correction filter and the network architecture. To do so, a large cohort composed of more than 400 patients was constituted, gathering images from multiple MR devices and tumor locations, to ensure the model robustness. The obtained pCT were first evaluated via the mean absolute error, based on intensities. Further dosimetry analyses were performed. Except for the training set size, all the studied approaches led to equivalent dosimetry performances. With the goal to introduce pCT-based dosimetry in clinical practice and to deploy a methodology to validate the non-inferiority of MRI-only based-radiotherapy treatment planning compared to conventional CT-based radiotherapy treatment planning, a second study aiming at assessing the best-suited dosimetry criteria for an unbiased pCT evaluation was performed. Their correlations with intensity-based metrics were also calculated. Lastly, the impact of scenarios simulating extreme errors pCT was quantified, based on the previously defined metrics. A new test set of 71 brain patients was constituted reflecting tumor locations encountered in clinics and treatment modalities used in our center. Global and local 1%/1mm gamma indices with non-extreme dose thresholds were proved to be relevant for the brain pCT task evaluation. Additionally, dose volume histograms-based metrics differences for target and organs at risk volumes should also be computed since they reflect delineated structure-wise pCT dosimetry performance. Lastly, pCT generation was applied to proton-based radiotherapy, via a collaboration with the Centre de ProtonthĂ©rapie d’Orsay. The previously developed adults DL-model was tested on paediatrics to assess its generalizability. Satisfying clinical performances were reached, except for a few patients, potentially suggesting the transferability of the evaluated model. Future work consists in a dosimetry analysis in a larger scale, with the composition of a cohort of 198 children representing 4 different histologies. The goal is to assess the most efficient network training and validation approach, with stopping power maps to ensure the non-influence of CT devices parameters on images. Thus, a solid understanding of key points for pCT generation and a methodology for pCT characterization have been achieved. The resulting recommendations have the key role to facilitate the quantification and interpretation of pCT quality evaluation criteria in the context of clinical trials set up, such as the ongoing observational GliopCT.De nos jours, les traitements de tumeurs cĂ©rĂ©brales par radiothĂ©rapie nĂ©cessitent l’acquisition d’un scanner utilisĂ© pendant les Ă©tapes de segmentation et de dosimĂ©trie, ainsi que d’une Imagerie par RĂ©sonance MagnĂ©tique (IRM) jouant un rĂŽle important durant l’étape de segmentation des volumes cibles en particulier. Cependant, cette double modalitĂ© implique de recaler spatialement les images, processus qui induit des erreurs de 2mm, actuellement prises en compte par une augmentation de marges. Ainsi, gĂ©nĂ©rer des pseudo scanners (pCT) Ă  partir d’images IRM apparaĂźt comme Ă©tant une solution attractive pour diminuer les marges et rĂ©duire l’irradiation des tissus sains pĂ©riphĂ©riques. La premiĂšre Ă©tape de cette thĂšse avait pour but de caractĂ©riser les paramĂštres jouant un rĂŽle clĂ© dans la qualitĂ© de pCT gĂ©nĂ©rĂ©s par Deep Learning (DL), Ă  savoir la taille de la cohorte d’entrainement, la sĂ©quence IRM utilisĂ©e en entrĂ©e du rĂ©seau, la technique de standardisation des images IRM, le filtre de correction d’inhomogĂ©nĂ©itĂ©s de champ et l’architecture du rĂ©seau. Pour ce faire, une large cohorte composĂ©e de plus de 400 patients a Ă©tĂ© constituĂ©e, rassemblant des images de multiples appareils d’IRM et localisations tumorales, afin d’assurer la robustesse du modĂšle. Les pCT obtenus ont tout d’abord Ă©tĂ© Ă©valuĂ©s Ă  l’aide de l’erreur absolue moyenne, basĂ©e sur les intensitĂ©s. Des analyses dosimĂ©triques ont ensuite Ă©tĂ© menĂ©es. Toutes les approches Ă©tudiĂ©es ont atteint des performances dosimĂ©triques Ă©quivalentes, exceptĂ© pour la taille du jeu d’entrainement. Pour introduire une dosimĂ©trie basĂ©e sur les pCT en pratique clinique et dĂ©ployer une mĂ©thodologie de validation de la non-infĂ©rioritĂ© de la planification de traitement dans le cas d’une radiothĂ©rapie basĂ©e seulement sur IRM comparĂ©e Ă  celle conventionnellement basĂ©e sur scanner, une deuxiĂšme Ă©tude visant Ă  dĂ©finir les mĂ©triques dosimĂ©triques les plus adaptĂ©es Ă  une Ă©valuation de pCT sans biais a Ă©tĂ© rĂ©alisĂ©e. Leurs corrĂ©lations avec des mĂ©triques basĂ©es sur les intensitĂ©s ont Ă©tĂ© calculĂ©es. Enfin, l’impact de scenarios simulant des erreurs extrĂȘmes de pCT a Ă©tĂ© quantifiĂ©, basĂ© sur les mĂ©triques optimales prĂ©alablement dĂ©finies. Un nouveau jeu de test de 71 patients a Ă©tĂ© constituĂ©, reflĂ©tant les localisations tumorales rencontrĂ©es en clinique et les modalitĂ©s de traitement propres Ă  notre centre. Les gamma index globaux et locaux pour le critĂšre 1%/1mm associĂ©s Ă  des seuils de dose non-extrĂȘmes ont montrĂ© leur pertinence pour la tĂąche d’évaluation de pCT cĂ©rĂ©braux. De plus, les diffĂ©rences de mĂ©triques issues des histogrammes dose/volume des volumes cibles et organes Ă  risque doivent aussi ĂȘtre calculĂ©es car elles reflĂštent la performance dosimĂ©trique du pCT pour chaque structure segmentĂ©e. Enfin, la gĂ©nĂ©ration de pCT a Ă©tĂ© appliquĂ©e Ă  la radiothĂ©rapie basĂ©e sur protons, grĂące Ă  une collaboration avec le Centre de ProtonthĂ©rapie d’Orsay. Le modĂšle de DL prĂ©alablement dĂ©veloppĂ© sur des patients adultes a Ă©tĂ© testĂ© sur des patients pĂ©diatriques, afin d’évaluer sa gĂ©nĂ©ralisabilitĂ©. Des performances cliniques satisfaisantes ont Ă©tĂ© atteintes, exceptĂ© pour quelques patients, pouvant potentiellement prouver la transfĂ©rabilitĂ© du modĂšle Ă©valuĂ©. Les travaux futurs comprennent une Ă©valuation dosimĂ©trique Ă  plus grande Ă©chelle, avec la composition d’une cohorte de 198 enfants reprĂ©sentant 4 histologies diffĂ©rentes. Le but est de dĂ©terminer l’approche d’entrainement et de validation du rĂ©seau la plus efficace Ă  l’aide de cartes de pouvoirs d’arrĂȘt pour s’affranchir de l’influence des paramĂštres des scanners sur les images. Ainsi, une solide comprĂ©hension des points clĂ©s de la gĂ©nĂ©ration de pCT ainsi qu’une mĂ©thodologie de leur caractĂ©risation ont Ă©tĂ© rĂ©alisĂ©es. Les recommandations en dĂ©coulant ont le rĂŽle clĂ© de faciliter la quantification et l’interprĂ©tation de critĂšres d’évaluation de la qualitĂ© de pCT dans le contexte de mise en place d’essais cliniques, tel que l’essai observationnel en cours GliopCT

    sCT and Dose Calculation

    No full text
    International audienceMagnetic resonance imaging (MRI) has recently established itself as a new standard in radiatiotherapy, owing to its high soft tissue contrast enabling a significantly more accurate volume segmentation and better characterisation of anatomical changes during treatments. The underlying synthetic computed tomography (sCT), required in clinics implementation for dose computation, is extensively investigated in this chapter. First, the generation methods, including bulk density assignment, atlas-based and voxel-based approaches, as well as the associated pros/cons, are described. An appealing compromise between ease, efficiency, and speed is bulk density assignment, which is already implemented in one commercial MRI-Linac. Very recently, however, deep learning has gained the upper hand and is set to become the reference method in clinical practice in the very near future. Second, the metrics to perform a multi-criteria sCT image quality evaluation are provided, as well as the latest performance obtained in the literature. High interest metrics include the body mean absolute error, dose volume histograms differences, global gamma indices with low-/high-dose thresholds, and metrics characterising registration differences between online positioning images and sCT/CT images. These metrics are complementary and enable to respectively assess Hounsfield units recovery, organ-scale dosimetric agreement, global dosimetric agreement in low-/high-dose regions, and patient setup ability. Third, after a reminder of some of the basics of distortions and artefacts in MR imaging, the latest recommendations in terms of assurance quality are described, with the ultimate aim of maximising the quality of the sCT produced. A particular focus is made on B0 inhomogeneities, residual gradient non-linearity, and susceptibility artefacts, owing to their high occurrence in clinical routine. Lastly, a concrete literature review of commercially available sCT products implementations into clinics, either with conventional linear accelerators (Linac) or with hybrid MRI-Linac, is provided. The associated performance, based on the metrics described in the second section, are also included

    COMBING: Clustering in Oncology for Mathematical and Biological Identification of Novel Gene Signatures

    No full text
    International audiencePrecision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional centerbased unsupervised clustering algorithm. It offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria to define a quantitative metric. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature
    • 

    corecore