416 research outputs found

    Spectral properties of the three-dimensional Hubbard model

    Full text link
    We present momentum resolved single-particle spectra for the three-dimensional Hubbard model for the paramagnetic and antiferromagnetically ordered phase obtained within the dynamical cluster approximation. The effective cluster problem is solved by continuous-time Quantum Monte Carlo simulations. The absence of a time discretization error and the ability to perform Monte Carlo measurements directly in Matsubara frequencies enable us to analytically continue the self-energies by maximum entropy, which is essential to obtain momentum resolved spectral functions for the N'eel state. We investigate the dependence on temperature and interaction strength and the effect of magnetic frustration introduced by a next-nearest neighbor hopping. One particular question we address here is the influence of the frustrating interaction on the metal insulator transition of the three-dimensional Hubbard model.Comment: 16 pages, 14 figure

    Open coast seagrass restoration. Can we do it? Large scale seagrass transplants

    Get PDF
    Some of the major challenges in seagrass restoration on exposed open coasts are the choice of transplant design that is optimal for coastlines periodically exposed to high water motion, and understanding the survival and dynamics of the transplanted areas on a long time-scale over many years. To contribute to a better understanding of these challenges, we describe here part of a large-scale seagrass restoration program conducted in a Marine Park in Portugal. The goal of this study was to infer if it was possible to recover seagrass habitat in this region, in order to restore its ecosystem functions. To infer which methods would produce better long term persistence to recover seagrass habitat, three factors were assessed: donor seagrass species, transplant season, source location. Monitoring was done three times a year for 8 years, in which areas and densities of the planted units were measured, to assess survival and growth. The best results were obtained with the species Zostera marina transplanted during spring and summer as compared to Zostera noltii and Cymodocea nodosa. Long-term persistence of established (well rooted) transplants was mainly affected by extreme winter storms but there was evidence of fish grazing effects also. Our results indicate that persistence assessments should be done in the long term, as all transplants were successful (survived and grew initially) in the short term, but were not resistant in the long term after a winter with exceptionally strong storms. The interesting observation that only the largest (11 m(2)) transplanted plot of Z marina persisted over a long time, increasing to 103 m(2) in 8 years, overcoming storms and grazing, raised the hypothesis that for a successful shift to a vegetated state it might be necessary to overpass a minimum critical size or tipping point. This hypothesis was therefore tested with replicates from two donor populations and results showed effects of size and donor population, as only the larger planting units (PUs) from one donor population persisted and expanded. It is recommended that in future habitat restoration efforts large PUs are considered.Project BIOMARES LIFE06 NAT/P/192 European Union LIFE Program cement company SECIL, Companhia de Cal e Cimentos S. A., Portugal Fundacao para a Ciencia e a Tecnologia FCT SFRH/BD/81086/2011 Pew Marine Fellowshipinfo:eu-repo/semantics/publishedVersio

    Управление финансовой устойчивостью и рентабельностью предприятия

    Get PDF
    Целью статьи является изучение значения управления финансовой устойчивостью и рентабельностью предприятия в современных условиях хозяйствования

    Structural control, evolution, and accumulation rates of massive sulfides in the TAG hydrothermal field

    Get PDF
    The Trans‐Atlantic Geotraverse (TAG) hydrothermal field on the Mid‐Atlantic Ridge is one of the best‐studied hydrothermal systems to date. However, high‐resolution bathymetric data obtained in 2016 by an autonomous underwater vehicle (AUV) reveal new information about the distribution of active and inactive hydrothermal deposits, and their relation to structural features. The discovery of previously undocumented inactive vent sites contributes to a better understanding of the accumulation rates and the resource potential of seafloor massive sulfide deposits at slow‐spreading ridges. The interpretation of ship‐based and high‐resolution AUV‐based data sets allowed for the determination of the main tectonic stress regimes that have a first‐order control on the location and distribution of past and present hydrothermal activity. The data reveal the importance of cross‐cutting lineament populations and temporal variations in the prevalent stress regime. A dozen sulfide mounds contribute to a substantial accumulation of hydrothermal material (~29 Mt). The accumulation rate of ~1,500 t/yr is comparable to those of other modern seafloor vent fields. However, our observations suggest that the TAG segment is different from many other slow‐spreading ridge segments in its tectonic complexity, which confines sulfide formation into a relatively small area and is responsible for the longevity of the hydrothermal system and substantial mineral accumulation. The inactive and weakly active mounds contain almost 10 times the amount of material as the active high‐temperature mound, providing an important indication of the global resource potential for inactive seafloor massive sulfide deposits

    Research Staff COVID-19 Pandemic Survey-Results from the Prevention and Early Treatment of Acute Lung Injury (PETAL) Network

    Get PDF
    Objectives: There is a lack of knowledge about the challenges of researchers who continued in-person research during the early phases of the COVID-19 pandemic. Design: Electronic survey assessing work-related exposure to COVID-19, logistical challenges, and procedural changes during the first year of the COVID-19 pandemic on clinical research. Setting: National Heart, Lung, and Blood Institute-sponsored Prevention and Early Treatment of Acute Lung Injury Clinical Trial Network Centers. Subjects: Research staff at research Network Sites. Measurements and Main Results: The 37-question survey was completed by 277 individuals from 24 states between 29 September 2020, and 12 December 2020, yielding a response rate of 37.7%. Most respondents (91.5%) indicated that non-COVID-19 research was affected by COVID-19 research studies. In response to the COVID-19 pandemic, 20% of respondents were reassigned to different roles at their institution. Many survey takers were exposed to COVID-19 (56%), with more than 50% of researchers requiring a COVID-19 test and 8% testing positive. The fear of infection was 2.7-times higher compared to pre-COVID-19 times. Shortages of personal protective equipment were encountered by 34% of respondents, primarily due to lack of access to N95 masks, followed by gowns and protective eyewear. Personal protective equipment reallocation from research to clinical use was reported by 31% of respondents. Most of the respondents (88.5%), despite these logistical challenges, indicated their willingness to enroll COVID-19 patients. Conclusions: During the first year of the COVID-19 pandemic, members of the research network were engaged in COVID-19 research despite logistical challenges, limited access to personal protective equipment, and fear of exposure. The research network’s survey experience can inform ongoing policy discussions to create research enterprises that can dexterously refocus research to address the knowledge gaps associated with novel public health emergencies while mitigating the effect of pandemics on existing research projects and research personnel

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The METEX study: Methotrexate versus expectant management in women with ectopic pregnancy: A randomised controlled trial

    Get PDF
    Background: Patients with ectopic pregnancy (EP) and low serum hCG concentrations and women with a pregnancy of unknown location (PUL) and plateauing serum hCG levels are commonly treated with systemic methotrexate (MTX). However, there is no evidence that treatment in these particular subgroups of women is necessary as many of these early EPs may resolve spontaneously. The aim of this study is whether expectant management in women with EP or PUL and with low but plateauing serum hCG concentrations is an alternative to MTX treatment in terms of treatment success, future pregnancy, health related quality of life and costs. Methods/Design: A multicentre randomised controlled trial in TheNetherlands. Hemodynamically stable patients with an EP visible on transvaginal ultrasound and a plateauing serum hCG concentration < 1,500 IU/L or with a persisting PUL with plateauing serum hCG concentrations < 2,000 IU/L are eligible for the trial. Patients with a viable EP, signs of tubal rupture/abdominal bleeding, or a contra-indication for MTX will not be included. Expectant management is compared with systemic MTX in a single dose intramuscular regimen (1 mg/ kg) in an outpatient setting. Serum hCG levels are monitored weekly; in case of inadequately declining, systemic MTX is installed or continued. In case of hemodynamic instability and/or signs of tubal rupture, surgery is performed. The primary outcome measure is an uneventful decline of serum hCG to an undetectable level by the initial intervention. Secondary outcomes are (re)interventions (additional systemic MTX injections and/or surgery), treatment complications, health related quality of life, financial costs, and future fertility. Analysis is performed according to the intention to treat principle. Quality of life is assessed by questionnaires before and at three time points after randomisation. Costs are expressed as direct costs with data on costs and used resources in the participating centres. Fertility is assessed by questionnaires after 6, 12, 18 and 24 months. Patients' preferences will be assessed using a discrete choice experiment. Discussion: This trial will provide guidance on the present management dilemmas in women with EPs and PULs with low and plateauing serum hCG concentrations
    corecore