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Abstract. A highly sensitive, modular three-color fluorescence endomicroscopy imaging platform spanning the
visible to near-infrared (NIR) range is demonstrated. Light-emitting diodes (LEDs) were sequentially pulsed
along with the camera acquisition to provide up to 20 frames per second (fps) three-color imaging performance
or 60 fps single color imaging. The system was characterized for bacterial and cellular molecular imaging in
ex vivo human lung tissue and for bacterial and indocyanine green imaging in ex vivo perfused sheep
lungs. A practical method to reduce background tissue autofluorescence is also proposed. The platform was
clinically translated into six patients with pulmonary disease to delineate healthy, cancerous, and fibrotic tissue
autofluorescent structures. The instrument is the most broadband clinical endomicroscopy system developed to
date (covering visible to the NIR, 500 to 900 nm) and demonstrates significant potential for future clinical utility
due to its low cost and modular capability to suit a wide variety of molecular imaging applications. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: [T 7JBJ24-1.076009]
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1 Introduction

Optical molecular imaging (OMI) promises to generate insights
into disease processes in vivoll with the potential to provide
in vivo molecular information in real-time based on signatures
of disease. However, to deliver on this potential, there is a
requirement for the development of imaging agents that allows
the fluorescent detection of disease targets alongside a versatile
imaging platform with multiplexing capabilities.

The core aim of this work was to demonstrate a modular
engineering solution for pulmonary fluorescent imagingf
with cellular and bacterial imaging®¥ capability. We demonstrate
that a modular, low cost, clinically translated, optical imaging
platform can delineate structural, bacterial, and cellular imaging
in situ and in vivo. The technical configuration advances our
previous endomicroscopy platformf as follows: (i) the number
of colors is expanded and extended into near-infrared (NIR);
(ii) spectroscopy is incorporated into the detection channel;
(iii) the limit-of-detection (LoD) is improved; (iv) a back-
ground suppression technique is introduced (droplet capture);
(v) an intuitive graphical user interface (GUI) is introduced;

and (vi) the unit was translated into clinical pulmonary
imaging.

While clinical practice mostly deploys white-light endos-
copy, molecular imaging is augmented by fluorescence-based
imaging. As our immediate aim is to interrogate molecular
processes in the distal human lung in vivo,l we have focused
on fluorescence endomicroscopy with access to the distal
lung (alveolar space), mediated via a transbronchial pass with
a narrow diameter device (<2 mm).

Our approach complements other fluorescence endomicro-
scopy platforms, which are at various stages of development.
Scanning fiber endoscope (SFE) systems have been developed B
with a high-resolution SFE endomicroscopy system achieving
bacterial imaging in the gut but this endoscope platform is
not suitable for accessing the distal lung due to its wide bore.
Miniaturized multicolor SFELM has also been implemented in
imaging atherosclerotic plaques in ex vivo murine tissue.d

Fiber-based endomicroscopy platforms utilizing proximal
camera imaging have been investigatedlg‘IE and translated
into clinic in a single-color modeEd with the described system
(called Versicolour henceforth), significantly extending this
capability as the first multicolor endomicroscopy system to
be translated into humans for in vivo imaging. In this manu-

*Address all correspondence to: Nikola Krstajic, E-mail:
BEd:UR; Kevin Dhaliwal, E-mail: Kev. Dhaliwal@ed.ac.uk

TPresent address: University of Dundee, School of Science and Engineering,
Dundee, United Kingdom
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script, we characterize our three-color configuration and
demonstrate its performance in bacterial imaging in ex vivo
models and imaging pulmonary structure in humans in vivo
in situ.
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Fig. 1 (a) Electro-optical architecture of Versicolour and (b) triggering sequence for 25-ms exposure
time for each individual channel resulting in 10 fps imaging speed for combined three-color images
(minor delay between each pulse inserted for camera hardware to handle the image transfer).

2 Materials and Methods

2.1 Device Description

The layout of the optics and electronics inside Versicolour is
shown in Fig. [[(a]. A laptop controls the image acquisition
sequence by triggering the LEDs in sequence, as shown in
Fig. [[0) To avoid spectral mixing, the fluorescence image
from each channel is acquired with only one LED turned on
at a time, with the camera triggered to acquire an image synchro-
nously when the LED is turned on. Therefore, to acquire a three-
color image, the trigger unit (NI9402, National Instruments,
United States) was programmed to generate a set of three indi-
vidual trigger pulses, where the pulse period dictated the expo-
sure time (our preprogrammed exposure times were 15, 25, 50,
100, and 250 ms corresponding to 20, 10, 6, and 1.3 fps three-
color imaging), see Fig. [[(b]. All three channels had identical
exposure times and gain due to camera firmware limitations.
The pulsing architecture supersedes simultaneous two-color
imagingu by acquiring spectrally unconstrained acquisitions
for each spectral channel. A previous technical configurationl
had been limited by the Bayer filter inherent in most color cam-
era solutions, which preselects the spectral range for each chan-
nel and completely removes any NIR capability.

The technical configuration of Versicolour was based on our
previous work! with significant improvements in adapting the
architecture to three-color fluorescence endomicroscopy and
molecular imaging applications. The improvements include
the addition of a NIR imaging and a parallel spectroscopy chan-
nel (Flame-S spectrometer, Ocean Optics, United States). Three
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LEDs (470 nm LED M470L3, 625 nm LED M625L3, 780 nm
LED M780F2, all from Thorlabs, United Kingdom) were
combined using achromatic condensers for collimation
(ACL2520U-A for 470 nm and 625 nm LEDs and ACL2520U-
B for 780 nm LED) and dichroics for combination. A dichroic
filter (FF506-DI03-25X36, Semrock, United States) combined
collimated blue light from the 470-nm LED with red and NIR
collimated beams, which were combined using a separate
dichroic (FF652-DI01-25X36, Semrock). The custom multi-
band filterset was manufactured by Chroma, United States.
The excitation and emission curves are shown in Figs.
and along with absorption and emission curves from
representative fluorescent dyes: nitrobenzoxadiazole (NBD),
fluorescein, cyanine 5 (Cy5), methylene blue, and indocyanine
green (ICG). Apart from methylene blue, we have tested all dyes
listed. Current human in vivo imaging uses either approved
(fluorescein and ICG) or nontoxic (methylene blue) dyes.E
For both NBD and Cy5, we are developing a range of clinically
translatable SmartProbes.HEME

A multiband excitation filter passes the collimated LED light
to the imaging fiber bundle via a multiband dichroic and
a microscope objective (MO) (RMS10X-PF, Olympus). The
fluorescence generated at the distal end of the fiber was trans-
mitted through the fiber and via a multiband emission filter and
tube lens (ITL200, Thorlabs, United Kingdom) to a fast mono-
chromatic CMOS camera (GS3-U3-23S6M-C, Grasshopper3,
Point Grey Research, Canada). On the emission path, a 50:50
nonpolarizing beamsplitter (BS013, Thorlabs) transmits fluo-
rescence into a spectrometer (Flame-S, Ocean Optics). The
exposure time for spectrometer measurements was set to 2 s.
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Fig.2 (a) Pass and stop bands of the custom three-color excitation filter along with the absorption curves
of representative fluorescent dyes (NBD, fluorescein, Cy5, methylene blue, and ICG) are shown and
(b) the pass and stop bands for the custom three-color emission filter and dichroic are shown along
with the emission curves of representative fluorescent dyes for each channel (NBD, fluorescein, Cy5,

methylene blue, and ICG).

Fig. 3 The medically approved cart with large display and the
Versicolour unit can be easily transported between hospital
departments.

Custom real-time software was written in C++ with
wxWidgets user interface classes. An intuitive GUI was devel-
oped for clinical use and the Versicolour unit was placed on
a medically approved cart (see Fig. [J). To enable clinical
translation, Versicolour was developed within the framework
of a quality management system following the principles of
BS EN 13485:2012. Risk management and mitigation were
organized around BS EN 14971:2012. Software development
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followed the international standard BS EN 62304:2006
Medical Device Software principles. Versicolour passed
electromagnetic compatibility (EMC) tests for radiated and con-
ducted emissions (York EMC Services, Grangemouth, United
Kingdom) and all locally required optical and electrical
safety testing for use in the interventional pulmonology suite.
Instrument enclosure mechanical designs (EG Technology Ltd.,
Cambridge) ensured ingress and electrical safety compliance
following BS EN 60601-1.

The total cost of the bill of materials for one-off manufacture
is $15000. The projected unit cost for 10 units (based on quo-
tations) is <$5000 without spectrometer and <$8000 with spec-
trometer. As the design is breadboard based with relatively
expensive electronics (e.g., National Instrument Cards), we
believe that a commercial imaging design can be produced
for less than $3000 for the manufacture of 10 units (without
spectrometer). Furthermore, by deploying standard product
design and optical engineering techniques (e.g., single metal
block design for optics rather than breadboard based design),
this can be reduced further. A similar single-color confocal scan-
ning unit sells for 100,000$.2 One needs to take into account
that regulatory aspects related to Food and Drug Administration
approval in USA and Conformité Européene marking in the
European Union can take up a significant fraction of the cost
of the end unit. However, even in this respect we believe that
the sheer simplicity of the design presented here warrants faster
translation to clinic.

2.2 Limit-of-Detection

The LoD for fluorescein (F6377, Sigma-Aldrich), Cy5 (777323,
Sigma-Aldrich), and ICG (21980, Sigma Aldrich) solutions was
determined using aqueous solutions of the fluorophores (5, 10,
20, and 30 nM in deionized water). The tip of the imaging fiber
bundle was inserted into the solution, and several images were
taken for each concentration with a 100-ms exposure time.
A 100 x 100 pixel area was selected from the central area of
the imaging fiber bundle. Mean and standard deviation (SD)
were calculated for the area and their ratio was ascribed as
the signal-to-noise ratio (SNR). To remove variation attributable
to the fiber bundle pattern, the SD value was derived from the
SD of the same area but for a difference of two subsequent
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images. The difference removes the pattern while the noise
inherent to image acquisition increases (by a factor of v/2).
To simplify matters, we defined the LoD as the detectable con-
centration of respective dyes resulting in a 2:1 SNR A

2.3 Chromatic Shift Test

To estimate the chromatic focal shift for all color channels
(green, red, and NIR), the fiber imaging bundle was dipped
into solutions of fluorescein, Cy5, and ICG (30 nM). A Z
axis stage (SM1Z, Thorlabs), which places the proximal side
of the fiber imaging bundle into the focus, was moved along
a 50 um distance in steps of 1 um. A bandpass filter between
520 and 560 nm was placed in the fluorescence emission path
for green channel measurements due to red fluorescence from
the fiber at 470-nm excitation. B3 This allowed the fluorescence
intensity to be evaluated from a single core versus focal position
in front of the MO. Maximum fluorescence from the respective
solutions indicated the optimal focus for a given channel.

A diluted solution of Constellation™ microspheres
(ThermoFisher Scientific, United States) was loaded onto the
distal tip of the imaging fiber and allowed to dry (~5 min)
and used to evaluate the image quality for fluorescence from
microspheres in green, red, and NIR with the aim of establishing
the image quality in the optimal focus.

2.4 Ex vivo Human Lung Tissue Imaging with
Labeled Cells and Bacteria

Ethics statement: All experiments using human samples in vitro
were performed following approval of the appropriate regional
ethics committee (REC), NHS Lothian (reference 15/ES/0094),
and with informed consent of the patients.

Ex vivo human lung tissue, coincubated with mammalian
and bacterial cells, was used as a model to evaluate cellular and
bacterial imaging performance in multicolor scenarios. The
1 X4 mm sections of excised human lung tissue were placed
into a 96-well tissue culture plate (Corning) and incubated with
50 uL of prelabeled cells. The tissues were harvested from the
periphery of specimens taken from the lung cancer resections.
Overnight cultures of Staphylococcus aureus ATCC25923
grown in Luria-Bertani (LB) broth (37°C, 250 rpm) were
adjusted to an optical density at 595 nm (ODsgs) of 1 and
washed in phosphate-buffered saline (PBS, Gibco). The bacteria
were labeled with Cellvue® Claret (Sigma-Aldrich), as per
manufacturer’s instructions, and resuspended in a final volume
of 1 mL PBS (~1 x 10° CFU mL™!). The murine macrophage
cell-line RAW264.7 (ATCC) was grown in complete Dulbecco’s
modified Eagle’s medium (Gibco) culture medium plus
1% pen/strep to 80% confluence in T75 tissue culture
flasks. RAW264.7 cells were harvested and adjusted to
5x 103 cells/mL. IR775 (IR-775 chloride, 544914, Sigma-
Aldrich) was incubated with the cells at 10 yM, 37°C, 30 min
followed by washing three times in PBS by centrifugation
(5 min, 400 X g). Primary human neutrophils were isolated,
as previously described,B with the number of retrieved neutro-
phils was determined with NucleoCounter NC-1000 (Chemo
Metec). Neutrophils were resuspended at a concentration of
5% 10° per mL in PBS and labeled with 1 uM calcein AM
(Sigma-Aldrich), 30 min 37°C, followed by washing three
times in PBS by centrifugation (5 min, 400 X g). Following
labeling, the cells were added to the ex vivo human lung tissue
and imaged with Versicolour by placing the distal end of the
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imaging fiber (Alveoflex™, Mauna Kea Technologies, France)
in direct contact with the tissue. Images were captured with
a 25-ms exposure time.

2.5 Sheep Lung Imaging

Ex vivo whole ventilated ovine lung experiments were per-
formed to evaluate performance in a human size-relevant model
and in particular to determine proof of concept for: (i) bacterial
imaging with a gram-negative specific bacterial imaging
SmartProbeB (three sheep lungs experiments) and (ii) blood
flow imaging in NIR using ICGE (one sheep lung experiment).

Following the same methodology as described before
Ref. P, ovine lungs were obtained from ewes destined for
cull and ventilated. Gram-negative Pseudomonas aeruginosa
3284 were cultured overnight in LB, adjusted to an ODsgs5 1
in PBS and labeled with Syto60 (1 uM, ThermoFisher
Scientific), followed by washing three times in PBS providing
a red counterstain. Delivery of bacteria and a gram-negative
SmartProbe were performed as follows: bronchoscopy
(Pentax EPM-1000) was used to guide to the distal lung location
and a flexible APC probe (ERBE) catheter was then inserted
into the working channel of the bronchoscope to instill 2 ml
of bacteria ODsg5 2 (~10° CFU/ml). The ERBE catheter was
removed and an Alveoflex™ imaging fiber bundle was passed
through the working channel of the bronchoscope and guided to
the subsegments, where bacteria had been instilled. Imaging was
performed in the distal lung on at least two locations for at least
10 s for each imaging session. The imaging fiber was removed
and 2 ml of the gram-negative SmartProbe (80 pg/5 ml) was
delivered into the same location. The imaging fiber was then
reinserted and guided to the subsegments with imaging was
performed as previously. Between each delivery, the broncho-
scope was cleaned and disinfected using 8% H,0O,. Clinical
Alveoflex™ (Mauna Kea Technologies) was used as the imag-
ing fiber bundle with Versicolour. For ICG imaging, ovine lungs
were obtained and perfused as above. The 2 ml of 1 mM ICG
were added to 2 L of perfusate and imaging was performed
2 min after ICG was added to the perfusate. The exposure
time of the camera was set to 50 ms.

2.6 Human in vivo Imaging

Versicolour was deployed in a clinical study, clinicaltrials.gov
identifier NCT02604862, following approval of the appropriate
REC, NHS Lothian (reference 15/SS/0235), and with informed
consent of the patients. In these cases, a clinical Alveoflex™
(Mauna Kea Technologies) was used as the imaging fiber bundle.

All patients were scheduled to undergo routine bronchos-
copy in an outpatient procedure suite using local anesthetic
and conscious sedation. Patients were recruited if they had an
underlying diagnosis of diffuse parenchymal lung disease or
suspected lung cancer. This allowed us to use our endomicro-
scopy system to characterize disease of both the airways and the
alveolar space. As patients were already scheduled to undergo
bronchoscopy, we were able to perform our imaging study in the
same sitting as diagnostic bronchoscopic investigation, such as
lavage, brushings, biopsy, and transbronchial ultrasound guided
needle aspiration without complication.

Areas of interest were selected based on cross-sectional
imaging (thoracic computerized tomography), which was used
to determine which pulmonary segments were examined using
endomicroscopy. For imaging of fibrotic and healthy alveolar
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Table 1 Six patients recruited to the clinical study. NSCLC, nonsmall
cell lung cancer; SCLC, small cell lung cancer; IPF, idiopathic pulmo-
nary fibrosis.

Versicolour
Bronchoscopy imaging
Patient Gender Age Diagnosis duration (min)® duration (min)
1 M 73 NSCLC 34 6
2 F 79 SCLC 34 7
3 M 65 IPF 23 7
4 F 73 NSCLC 40 7
5 M 54 SCLC 28 6
6 M 74 IPF 21 5

#This included the gathering of other diagnostic investigations as
required.

regions, the bronchoscope was directed to the segment of inter-
est before passing the Alveoflex™ down the working channel
and past the point of vision. The endomicroscopy system ena-
bles real-time feedback as the fiber passes along bronchial struc-
ture before achieving a transbronchial push and emerging into
the alveolar space with visual confirmation. For imaging of
bronchial abnormalities such as lung cancer, the lesion was iden-
tified using the bronchoscope before the fiber was advanced to
make contact under direct vision with the diseased mucosa. The
total number of images acquired was 38,880 and the total num-
ber of spectra was 663. White light from the bronchoscope was
briefly switched off during spectral acquisition for bronchus, but
this was not required after transbronchial push into alveolar
space. Bronchoscopy and endomicroscopy were completed in
six patients (Table [[J), and following the procedure, they were
monitored for 4 h before discharge and all received a follow-
up telephone call 24 h later. There were no serious adverse
events recorded in this study.

2.7 Autofluorescence Background Suppression
Methods

To reduce the effects of autofluorescence background from lung
tissue, the following two methods were evaluated. First, in
human lung imaging in situ, the method of Muldoon et al. B3
was adopted, where the fiber was gently pulled back once
the distal lung tissue was reached, with reduced pressure on
the tissue reducing autofluorescence.

In addition, we further explored droplet capture onto the
endoscope’s tip for tissue background removal. For droplet
analysis, the tip of the fiber captures liquid from wet tissue
through surface tension adsorption. We utilized the captured
liquid for separate imaging or spectroscopy analysis, because
the tissue background is inherently removed. This is especially
useful for molecular imaging of enzyme activity probes, where
the spectral signature may overlap with tissue autofluorescence
if the enzyme reporter has a similar fluorescent reporter. To
evaluate the methodology, we placed excised human lung tissue
in two microwells of a 96-well plate. The first microwell con-
tained 150 ul of PBS, whereas the second contained a 3 M
solution of fluorescein amidite (FAM) in 150 ul of PBS.
Spectroscopy was performed on tissue by placing the fiber
tip on tissue in the microwell. After this, the tip was retrieved

Journal of Biomedical Optics

076005-5

and a spectrum was acquired of the droplet captured on the tip of
the imaging fiber bundle. Retrieving the fiber tip from the solution
captured ~400 nl droplet by surface tension. Five spectra were
taken from each tissue in the microwell and the respective drop-
lets. Exposure time for each spectroscopy acquisition was 2 s.

2.8 Imaging Settings

The imaging settings for Versicolour were as follows: images
acquired were 960 x 600 pixels, camera exposure time was typ-
ically set to 25 ms (10 fps three-color imaging) unless otherwise
stated. The exposure time needs to be adjusted so it acquires
enough fluorescence from tissue and other optical signatures
in all color channels. Our main clinical constraint has also
been to achieve 10 fps in three-color imaging to allow instant
viewing and reaction to endoscope positioning. After evalu-
ation, we chose a 25-ms exposure time as it was adequate
for most of our three-color imaging experiments. For each im-
aging experiment, a fluorescence background image was taken
from a blackened Eppendorf filled with deionized water and
subtracted from all acquired images. For displaying clinical
images, we performed a division of acquired image with a
selected lightfield image taken from the same sequence.

3 Results

3.1 Limit-of-Detection

LoD analysis is shown in Fig. (LoD here defined as the
concentration of fluorophore, which generates a SNR of 2:1).
The LoD was 5.7 nM for fluorescein, 2.4 nM for Cy5, and
84 nM for ICG for 100-ms exposure time (or 22.8 nM,
9.6 nM, and 33.6 nM, respectively, for 25-ms exposure time
assuming read noise limited detection). As CMOS camera tech-
nologies are rapidly improving (as are increases in in LED optical
power), reductions in camera noise will push LoDs to subnano-
molar concentrations in dark background scenarios. In our pre-
vious implementation,u LoDs for fluorescein and Cy5 were 10
and 50 nM, respectively, and thus, the LoD for fluorescein
and Cy5 has improved by a factor of 2 and 20.8, respectively.
The main reasons for these improvements are lower camera
noise, improved collection efficiency due to monochrome detec-
tion, and increased LED optical power (4 mW on the output of the
imaging fiber bundle for 470- and 625-nm LEDs and 1.9 mW for
780-nm LED). The effect is more dramatic in the red fluorescence
channel, because previously in the color camera, the fiber fluo-
rescence was detected in the red pixels of the Bayer filter, whereas
now fiber fluorescence is detected during the 470-nm LED trigger
(as shown before, the imaging fiber bundle has a long Stokes shift
with 470-nm excitationuﬂ). We subtract the background (fiber
fluorescence and camera dark noise) for each color band, but
as mentioned before,q the Poisson noise of this background
remains the limiting factor.

3.2 Chromatic Shift Evaluation

Figure fi(b] shows the separation of optimal foci for green, red,
and NIR channels. Green, red, and NIR channels were equally
separated by 13 um. Individual cores were visible across this
range. Optimally, three-color imaging (green, red, and NIR)
requires the focus to be set for the red channel [focus location
at 25 ym in Fig. fi(B]]. For optimal two color imaging in green
and red, the focus is set between green and red peaks [17 ym in

Fig. f®]].
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Fig. 5 (a) Constellation™ microspheres dried on the tip with each color channel displayed separately
(green, red, and NIR) and merged in (b) with two line profiles shown in (c). Line profile 1 of a microsphere
fluorescing shows green and red fluorescence. Line profile 2 of a larger microsphere shows red and NIR
fluorescence.

To illustrate that the optimal focus for three-color imaging is
sufficient to image small objects, we show in Fig. ] an image of
Constellation™ microspheres dried on the tip of the imaging
fiber bundle. Figure has the three channels displayed sep-
arately to illustrate overall color colocalization, and Fig. has
them merged in single RGB image. The two line profiles were
chosen to show colocation of green and red fluorescence (line
profile 1) and separately, red and NIR fluorescence (line profile
2), both in Fig. B(c]. There are no colocating three-color micro-
spheres, and NIR microspheres were always much larger than a
single core, thus limiting our analysis for this band. Green and
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red fluorescence from the small microspheres generated signals
in a single core in line profile 1 while red and NIR fluorescence
in line profile 2 matched each other well despite the NIR having
lower SNR. For saturating regions in green, we observed core-
to-core coupling,B which reduces contrast.

3.3 Muilticolor ex vivo Human Lung Tissue Imaging

Figure f§ demonstrates three-color imaging in ex vivo human
lung tissue at 10 fps. Macrophages fluorescing in the NIR (dis-
played as blue) and bacteria fluorescing in red can be seen in the
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Fig. 6 (a) and (b) Ex vivo human lung (green fluorescence) with macrophages [NIR shown as blue
from IR775, white arrows pointing to three in (a)] and bacteria (red fluorescence from Cellvue® Claret).
Tissue in panel (b) is mostly out of focus (white arrows). (c) Ex vivo human lung (green fluorescence) with
macrophages (NIR shown as blue from IR775), bacteria (red fluorescence from Cellvue® Claret), and
neutrophils (strong green fluorescence from calcein labelled neutrophil—arrow).

same field-of-view (FoV) [Figs. pa}-p(c]l. Ex vivo human lung
tissue autofluorescence is captured in the green fluorescence
channel as well as calcein-labeled neutrophils [Fig. B(c]l.
Most of human lung tissue autofluorescence is derived from
the elastin fiber network.? Figure has tissue out of focus
due to motion of the probe, whereas the lung elastin fiber net-
work is sharper in Figs. and p(c). Figure shows colo-
cating macrophages, neutrophils, and bacteria toward the center
of the image. While depth information is not available to guar-
antee colocation in 3-D, we were encouraged to pursue imaging
scenarios such as this in vivo in situ and add technical method-
ologies to improve optical sectioning. In summary, we have
demonstrated three-color cellular and bacterial resolution imag-
ing across the visible to NIR spectrum.

In future applications that potentially involve exogenously
delivered fluorophore SmartProbes® to the distal lung,
distinguishing signal from noise will be challenging if the
fluorophores’ emission spectrum overlaps with elastin. Thus,
background suppression techniques discussed below represent
an important aspect for in vivo imaging.

3.4 Ventilated Ovine Lung Imaging

Moving from ex vivo imaging of small sections of patient-
derived human lung tissue, the next stage of development was
to demonstrate utility to derive optical signatures in a human
size relevant model. In this regard, we pursued initial proof
of concept in a ventilated and perfused ovine lung model in
a dedicated setup [Fig. [[(a]]. The imaging bundle was navigated
to the distal alveolar regions where imaging of bacteria is
present [the bacteria were counterstained with Syto60 (red)
prior to instilling into the lung and targeted with bacteria-spe-
cific SmartProbe (green) in situ]. Figure [[(B] shows example
frames from one ex vivo ventilated sheep lung, each with
representative green and corresponding red channels imaged
simultaneously. No green punctate signals were observable in
the green channel images prior to instilling gram-negative
SmartProbe while red punctate Syto60 labeled bacteria were
visible [top row in Fig. [[(B]]. After instilling gram-negative
SmartProbe (with NBD green fluorophore), colocating red
and green punctate signals were observable [bottom row in
Fig. [/(b]]. The same results were obtained in the further two
ovine lungs tested.

Figure shows sheep lung imaging snapshots with perfu-
sate inflow. The ICG stained perfusate flow was observable in
the distal lung for each pump cycle of the perfusate entering
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the FoV. The imaging fiber bundle was embedded in the distal
lung to keep the FoV static. The NIR signal from ICG was
diffused and blood vessels were not observable, probably due
to trauma caused by the fiber insertion. After 20 min, the
ICG started to stain the tissue.

3.5 Clinical Imaging in the Distal Human Lung

We embarked upon an exploratory clinical study with Versicolour
with the primary aim to generate proof of concept data that
Versicolour could delineate autofluorescent signatures of pulmo-
nary elastin organization. We thus selected patients in whom the
elastin network would be expected to be disordered. We used CT
scans to help guide imaging to normal areas as control images.

Figure f demonstrates three in vivo imaging scenarios of nor-
mal bronchial epithelium (left column). Two example images
with microvessels are shown in Fig. § (middle column). The
alveolar space was reached (Fig. B, right column) after pushing
the imaging fiber bundle gently into acinar subunits. Alveolar
septa are clearly delineated in normal alveolar space images
(Fig. B, right column). Broken epithelium in nonsmall cell
lung cancer (NSCLC) is shown in Fig. [}, left column, whereas
broken epithelium in small cell lung cancer (SCLC) is shown in
Fig. B, middle column. Fibrotic lung (alveolar space) is shown in
Fig. B, right column. Overall, the level of autofluorescence
varied from patient to patient but also within the same patient.
Some structures fluoresce strongly (Fig. [, right column, fibrotic
lung) while bronchial epithelium and some normal alveolar
structures fluoresce weakly resulting in low SNR images
(Fig. B, top right and Fig. ], middle column lower image).
The varying autofluorescence is likely to be attributable to vary-
ing abundance of elastin and collagen in the native structures.
Our comparison between normal and disrupted tissue was not
blind in this clinical study. Clinically, prior information from
CT and white-light bronchoscopy provides important input in
judging endomicroscopy imaging.

Given the widefield capture of images and the lack of
sectioning, background autofluorescence contributes to “noisy”
images. In our clinical experience in the distal lung (alveolar
regions), this can be significantly attenuated by a small retrac-
tion (~200 to 400 um) of the imaging bundle (see Fig. 0.

In addition, we explored background suppression by captur-
ing droplets on the endoscope tip ex vivo. Figure [[] illustrates
how the droplet suppresses tissue autofluorescence background.
Spectra on tissue without FAM [Fig. [T(a]] and with FAM
[Fig. [[T(Bb]] are similar in intensity and shape, making it difficult
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Fig. 7 (a) Perfusion set-up used in sheep lung experiments containing the following components: 1,
organ chamber; 2, suction reservoir; 3, perfusate reservoir; 4, heater; 5, pump control; 6, gas membrane
diffuser; 7, centrifugal pump head. (b) Ex vivo ventilated sheep lungs (each row) with green channel,
corresponding red channel and combined image (three columns) prior to instiling gram-negative
SmartProbe onto gram-negative bacteria (first row) and after instilling gram-negative SmartProbe
onto gram-negative bacteria (second row). (c) Incoming wave of NIR fluorescence from ICG in the
perfusate filling the distal lung of the ventilated and perfused ovine lungs.

Microvessel in normal Normal distal lung

distal lung

Normal bronchial
epithelium

Fig. 8 Human in vivo imaging with examples of bronchial epithelium (left column, arrow pointing in
the direction of normal elastic fibred network), distal lung with blood microvessel (middle column,
arrow pointing in the direction of the vessel), and normal alveolar space lung (right column, arrow pointing
to alveolar septa). All images were scaled individually for intensity to maximize contrast.

to detect the presence of FAM. Droplet from the tissue without
FAM does not fluoresce [Fig. [[1(c]], whereas the droplet from
tissue with FAM demonstrates strong spectra [Fig. [[I(d]].
Droplet spectroscopy or imaging therefore allows for back-
ground suppression and could be useful for accurate enzyme
activity analysis, where droplet capture is possible in vivo.

3.6 Discussion
As the only currently clinically approved endomicroscopy sys-

tem for respiratory medicine is probe-based confocal laser
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endomicroscopy, clinicians rely on autofluorescencel or intra-
venous fluorescein for alveolar imagingE and microvessel
localization. Bl Other studies have used acriflavin hydrochloride
topical staining for cellular imaging in vivoE! in green. Single
color systems suffer from overlaps between green autofluores-
cence and green fluorescence staining, so there is an ongoing
effort to verify red-shifted fluorescence cellular imaging in vivo
such as with methylene blue.B Our platform supports simultane-
ous imaging for numerous scenarios, such as methylene blue
for cellular imaging in red and ICG for microvessel localization
in NIR. We also observed weak red autofluorescence from
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Fibrotic lung
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>
X

Fig.9 The disturbed bronchial epithelium in NSCLC (left column, arrow pointing at fibred networks cross-
ing each other) and SCLC (middle column, arrow pointing at fibred networks crossing each other).
Fibrotic (distal) lung with disturbed alveolar structure is shown in right column, no alveolar septa can
be found.

Fig. 10 Background suppression by retracting the fiber. (a) and (b) High background image in alveolar
space can be improved if the clinician retracts the fiber in order to reduce the amount of elastin pressed

beneath the imaging fiber bundle.

alveoli during in vivo imaging in two out of six patients, but it is
difficult to draw conclusions from such a small sample (see
Fig. [[4 for weak red fluorescence from alveolar septa).

With the development of optical imaging SmartProbes that
are likely to be spread across the optical spectrum, the utility
of modular cost effective solutions will be essential to realize
the potential of OMI. In the case of Versicolour, the LEDs
and filters can be simply interchanged to accommodate spectral
windows.

The droplet method explored is very practical for single pass
capture of surface liquids. While it exploits naturally occurring
biofouling, it is also limited to single capture in vivo. In addition,
it is not practical for the transbronchial pass. Despite the limi-
tations, we feel it to be a very practical method for background
suppression in all other situations. While we tested the method
with spectroscopy, it is also applicable to imaging. For example,
for imaging bacteria labeled in green where tissue background
fluorescence masks most of them, we have observed more
bacterial “dots” to reappear in the droplet on dark background
thus improving detection.
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In widefield imaging scenarios, optical sectioning remains an
issue. Fluorescence emanates from up to 250 ym away and
reaches the camera through the imaging fiber bundle. B! While
this reduces contrast by increasing background, the system per-
forms well for image guidance into distal lung tissue and bac-
terial imaging despite the fact that we do not perform any image
processing. In addition, colocalization of objects in three chan-
nels will be a challenge in fast moving environments during
in vivo imaging. We have found that a 25-ms exposure time is a
good compromise in this respect. We have also found that expo-
sure times above 100 ms cause significant blur during in vivo
imaging. Our ambition in future work will be to address both
2-D and 3-D colocalization in order to bring endomicroscopy
closer to the performance of bench top fluorescence microscopy.

Further technical developments include adding image
processing,m adopting structured illumination techniques,ﬂ’E
and exploiting the acquisition speed of low noise CMOS
cameras. These modular improvements offer a broad potential
platform to exploit fluorescence-based endomicroscopy coupled
with the emergence of low-cost disposable imaging fibers.Ed
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Fig. 11 While ex vivo human lung tissue (a) without FAM and (b) with FAM has similar spectra, (c) the
droplet from tissue well without FAM does not fluoresce (d) while the droplet from tissue well with FAM

has spectra corresponding to FAM.

Green channel

Red channel

Combined

Fig. 12 Intwo patients, alveolar space was visible in green and red channels. Green channel and match-
ing red channel are combined into a single two color image. (a) Green channel, (b) red channel, and

(c) combined.

4 Conclusion

We have demonstrated the imaging performance of a modular
and highly economical endomicroscopy system in vivo and
ex vivo. Three-color imaging across visible and NIR channels
has the potential to provide multiple molecular and autofluores-
cent targets to be imaged concurrently at video rate, thus
expanding the capability of endomicroscopy. Importantly, the
low cost of the technology platform may enable the widespread
dissemination of clinical endomicroscopy.
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optical fibre-based strategies to interrogate the alveolar epithelium
within the lung, and the impact of cellular senescence on tissue repair
in this region.
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